月球表面“生锈了”,而参与反应的氧气和水来自哪里呢?

月球表面“生锈了”,而参与反应的氧气和水来自哪里呢?

虽然我们的月球没有空气,但研究表明,月球表面存在化学成分为三氧化二铁(Fe2O3)的赤铁矿,这是一种通常需要氧气和水才会形成的铁锈形式,这让科学家感到困惑不已。 1973年,NASA的水手10号(Mariner 10)所观测到的月球,在当时,研究还没有在月球没有空气的表面上发现任何生锈的迹象。 图片来源:NASA/喷气推进实验室/西北大学(Northwestern University) 长期以来,以铁锈文明的是火星。火星表面上的铁,再加上古代曾经存在过的水和氧气,赋予了火星红色的外表。但是,科学家最近惊讶地发现,有证据表明表面没有空气的月球也“生锈”了。 《科学进展》(Science Advances)上的一篇新论文回顾了印度空间研究组织(IndianSpace Research Organization,ISRO)的月船一号(Chandrayaan-1)轨道探测器的数据,这架轨道器在2008年对月球表面进行调查时发现了水冰可能存在的证据,并绘制出了多种矿物质位置图。论文的主要作者、来自夏威夷大学(University of Hawaii)的李帅(音译,Shuai Li)研究后发现,月船一号上的月球矿物质测绘仪(Moon Mineralogy Mapper,M3)的数据中,存在着大量水的迹象。月球矿物质测绘仪由美国航空航天局(NASA)位于南加州的喷气推进实验室(Jet Propulsion Laboratory,JPL)所建造。水与岩石相互作用会产生多种矿物质,M3检测到的光谱,或者说从月球表面反射的光,表明月球两极的组成与其余部分完全不同。 印度空间研究组织月船一号轨道飞行器上的月球矿物制测绘仪(M3),合成了上面这张图像,图中的蓝色区域显示,水集中在月球的两极。仔细分析两极的岩石光谱后,研究人员发现了赤铁矿,也就是一种铁锈形式的迹象。 图片来源:ISRO/NASA/加州理工-喷气推进实验室/布朗大学(Brown University)/美国地质调查局(United States Geological Survey,USGS) 对于这一点,李帅非常感兴趣,他将目光集中到月球的两极光谱。尽管富含铁的岩石在月球表面四处散布,但在发现月球两极的光谱数据与赤铁矿如此匹配时,他仍然感到惊讶不已。赤铁矿是铁暴露在氧气和水中产生的一种铁的氧化物,也就是铁锈的一种形式,但在月球上应该是不会有氧气或者液态水的,它究竟是怎么生锈的呢? 月球金属之谜 要解开这个谜团,一切还得从太阳风(solar wind)说起。太阳风是从太阳上层大气中射出的超高速等离子体带电粒子流,以氢气为主要成分轰击着地球和月球。氢气的存在会让赤铁矿难以形成,因为它是一种还原剂,在化学反应中通常会被相互作用的原子夺去电子,而这恰恰与产生赤铁矿的反应原理相反:为了让铁生锈,需要有一种氧化剂夺去铁原子的电子。对于地球而言,我们拥有强大的地球磁场将太阳风中的氢气隔绝在外,但月球却没有这样的保护罩。 “这令人非常困惑,”李帅表示,“月球的环境非常不利于赤铁矿的形成。”因此,他找到了JPL的科学家阿比盖尔·弗雷曼(Abigail Fraeman)和维维安·孙(Vivian Sun),帮他梳理分析M3的数据,并确认他真的在月球两极发现了赤铁矿。 “一开始的时候,我是完全不相信的态度。考虑到月球的环境,它(赤铁矿)是不应该存在的。”弗雷曼说,“但是自从我们在月球上发现了水之后,人们就一直在猜测,如果水与岩石发生过反应,那么月球上可能存在着比我们所想象的更多的矿物质。” 在仔细的观察和分析后,弗雷曼和孙确信:M3的数据的确表明月球两极是存在赤铁矿。孙说:“最后,光谱数据明确的体现了赤铁矿的存在,而至于它为什么存在于月球表面,我们还需要一个合理的解释。” 三种关键成分 他们的论文提供了一个“三管齐下”的模型,来解释在月球环境中为什么能形成铁锈。 首先,尽管月球没有自己的大气层,但实际上它还是拥有微量的氧气,这些氧气的来源正是我们的地球。地球的磁场就像一个风袋一样,在地球后侧有较长的拖拽。2007年的时候,日本的辉夜号(Kaguya,又称辉夜姬号、月亮女神号)轨道飞行器发现,来自地球上层大气的氧气可以顺着这种延伸的磁尾飘荡出去,这是众所周知的,地球上的这些氧气可以飞行239 000英里(385 00千米)到达月球。 这一发现与M3的数据相吻合,M3的数据表明,相比背对地球的那一侧,在月球面向地球的一侧所发现的赤铁矿数量更多。李帅表示:“这表明地球的氧气可能在推动着赤铁矿的形成。”在过去数十亿年间,月球一直在一点一点地远离地球,所以当两者在遥远的过去相距较近时,可能有更多的氧气跃过了这个距离。 还有第二个需要解决的问题,那就是太阳风输送来的所有这些氢气。作为还原剂,氢气应该会防止氧化反应的发生,但地球磁场的磁尾在这里也起到了中介作用。磁尾部分除了将氧气从我们的星球运送到月球之外,还在月球饶轨运行的某些时期阻挡了99%以上的太阳风,特别是在月相为满月的时候,这就为月球打开了特定的周期性窗口,让铁锈能得以形成。 谜团的第三个部分则是水,尽管月球的大部分地方都完全干涸了,但在月球另一侧被阴影覆盖的月球陨石坑中,科学家们发现了水冰。然而,赤铁矿的发现地点却又离发现水冰的地方很远。李帅认为,相比在月球表面发现的水分子,更可能是定期飞掷到月球上的快速移动的尘埃粒子释放了月球表面含有的水分子,在冲击到月球表面时与土壤中的铁混合。一方面,撞击产生的热量可以提高氧化反应的速度;另一方面,这些尘埃粒子本身可能也携带了水分子,随着撞击穿入月球表面,从而与铁混合。在恰好合适的时机,也就是当月球因地球磁尾的阻挡受不到太阳风的侵扰且存在氧气时,可能就会发生形成赤铁矿的化学反应。 要确定水和岩石之间相互作用的确切方式,还需要更多的数据。这些数据还可能有助于解释另一个谜团:为什么在月球的另一侧仍然有少量的赤铁矿形成,毕竟地球的氧气在理论上并不能到达月球背面。 更多的月球探索将带来更多月球科学 弗雷曼说,这种模型还可以解释在其他没有空气的星体(如小行星)上发现的赤铁矿:“可能是少量的水和尘埃颗粒的撞击让这些星体中的铁生锈了。” 李帅指出,这是月球科学一个激动人心的时刻。自上一次阿波罗(Apollo)计划登月以来的将近50年后,月球再次成为了一个主要的探索目的地。作为阿耳忒弥斯(Artemis)计划的一部分,NASA计划从明年开始向月球发射数十种新的仪器和技术实验,然后从2024年开始进行人类探月任务。 JPL还为名为“月球开拓者号”(Lunar Trailblazer)的轨道器建造了M3的新版本,其中一个仪器是高分辨率挥发物和矿物质月球测绘仪(High-resolutionVolatiles and Minerals Moon Mapper,HVM3),它将绘制月球上永远处在阴影中的陨石坑内的水冰位置图,或许还能揭示有关赤铁矿的新细节。 “我认为这些结果表明,太阳系中发生的化学过程比我们此前意识到的还要复杂。”孙说道,“我们可以通过在未来发射前往月球的任务,来检验这些假设,从而更好地理解它们。” 参考来源: https://www.nasa.gov/feature/jpl/the-moon-is-rusting-and-researchers-want-to-know-why

雷达显示月球的金属成分比研究人员想象的要多

雷达显示月球的金属成分比研究人员想象的要多

一开始是为了寻找潜伏在极地月球陨石坑里的冰,后来变成了一项意想不到的发现,这可能有助于澄清月球形成的一些模糊历史。 NASA月球勘测轨道飞行器(LRO)上的微型无线电频率(Mini-RF)仪器的团队成员发现了新的证据,表明月球的地下可能比研究人员想象的更富含铁和钛等金属。这一发现发表在7月1日的《地球和行星科学快报》(Earth and Planetary Science Letters)上,可能有助于更清楚地了解地球和月球之间的联系。 来自马里兰州劳雷尔市约翰霍普金斯应用物理实验室(APL)的迷你射频首席研究员、该项研究的合著者维斯·帕特森(Wes Patterson)说:“LRO任务和它的雷达设备继续给我们带来关于我们最近邻居的起源和复杂性的新见解。” 这张照片是根据美国宇航局的月球勘测轨道飞行器的数据拍摄的,显示了我们从地球上看到的月球表面。我们对我们最近的邻居了解得越多,我们就越了解月球是一个充满活力的地方,它拥有有用的资源,有一天甚至可以支持人类的存在。 资料来源:NASA / GSFC / Arizona State University 大量证据表明,月球是火星大小的原行星和年轻的地球碰撞的产物,形成于残留的碎片云的引力坍缩。因此,月球的主要化学成分与地球非常相似。 然而,如果仔细观察月球的化学成分,这个故事就变得模糊起来。例如,在月球表面明亮的平原上(称为月球高地),岩石中含有的含金属矿物比地球少。如果地球在撞击前已经完全分化为地核、地幔和地壳,而使得月球大部分缺乏金属元素,则可以解释这一发现。但看看月球上的玛利亚——广袤而黑暗的平原——那里的金属含量比地球上许多岩石还要丰富。 这种差异使科学家感到困惑,导致了许多有关影响原行星的因素可能导致差异的问题和假设。Mini-RF小组发现了一种奇怪的模式,可能会找到答案。 研究人员试图利用微型射频技术来测量月球北半球陨石坑地面上堆积的月球土壤中的电学特性。这种电学性质被称为介电常数,这是一个比较物质和空间真空传输电场的相对能力的数字,可以帮助定位隐藏在火山口阴影中的冰。然而,研究小组注意到这种特性随着陨石坑的大小而增加。 对于大约1到3英里(2到5公里)宽的陨石坑,材料的介电常数随着陨石坑的增大而稳定增加,但对于3到12英里(5到20公里)宽的陨石坑,介电常数保持不变。 这种模式的发现为一种新的可能性打开了一扇门。由于形成更大陨石坑的流星也会在月球的地下挖得更深,因此研究小组推断,更大陨石坑内尘埃介电常数的增加可能是流星挖掘了地表下的铁和钛氧化物的结果。介电特性与这些金属矿物的浓度直接相关。 如果他们的假设是正确的,那就意味着月球表面的前几百米只有少量的铁和钛氧化物,但在表面之下,有一个稳定的增长,丰富的和意想不到的财富。 通过比较微型射频雷达拍摄的陨石坑底部的雷达图像,以及LRO广角相机、日本的月亮女神号和美国宇航局的月球探测仪拍摄的金属氧化物地图,研究小组发现了它所怀疑的事实。更大的陨石坑,随着介电材料的增加,也含有更丰富的金属,这表明从0.3到1英里(0.5到2公里)的深度挖掘的铁和钛氧化物比从月球表面的0.1到0.3英里(0.2到0.5公里)的深度挖掘的更多。 “来自Mini-RF的令人振奋的结果表明,即使在月球运行了11年之后,我们仍在发现我们最近的邻居的古老历史,” NASA马里兰州戈达德太空飞行中心的LRO项目科学家诺亚·佩特罗说。“ MINI-RF数据对于告诉我们月球表面的特性具有极其重要的价值,但我们使用该数据来推断45亿年前发生的一切!” 这些结果是根据美国宇航局最近的重力恢复和内部实验室(GRAIL)任务的证据得出的,该任务表明,在月球巨大的南极——艾特肯盆地下面几十到几百公里处存在着大量的高密度物质,这表明高密度物质并非均匀分布在月球的地下。 研究小组强调,这项新研究无法直接回答有关月球形成的悬而未决的问题,但是它确实减少了月球地下金属和钛氧化物分布的不确定性,并提供了更好地了解月球形成和形成的关键证据,以及它与地球的联系。 海吉说:“这确实提出了一个问题,即这对于我们之前的编队假设意味着什么。” 为了找到更多的证据,研究人员已经开始研究月球南半球的陨石坑底部,看看是否存在同样的趋势。 LRO由位于马里兰州格林贝尔特的NASA戈达德太空飞行中心管理,隶属于位于华盛顿的NASA总部的科学任务理事会。Mini-RF由APL、海军空战中心、桑迪亚国家实验室、雷声公司和诺斯罗普·格鲁曼公司领导的团队设计、制造和测试。 有关LRO的更多信息,请访问: https://www.nasa.gov/lro 来源: https://www.nasa.gov/feature/goddard/2020/moon-more-metallic-than-thought