NASA的帕克太阳探测器创造历史,完成与太阳的最近距离飞行
NASA的任务团队确认,“触摸”太阳的任务在2024年12月24日完成了创纪录的最近距离飞行后成功生还。
NASA的任务团队确认,“触摸”太阳的任务在2024年12月24日完成了创纪录的最近距离飞行后成功生还。
2021年4月17日,对太阳来说是平凡的一天,直到一道明亮的光闪爆发,巨大的太阳物质云从我们的恒星中喷涌而出。太阳的这种爆发并不罕见,但这一次的爆发范围异常广泛,它以接近光速的速度抛射高速质子和电子,击中了内太阳系多个航天器。
在太阳炽热的高层大气中,一组科学家发现了新的线索,可以帮助预测太阳下一次耀斑爆发的时间和地点。
2022年1月15日,洪加汤加-洪加哈帕伊火山喷发时,向全世界发出了大气冲击波、音爆和海啸波。现在,科学家们发现火山的影响也到达了太空。 通过分析来自NASA电离层连接探测器(ICON)和欧洲航天局(ESA)Swarm卫星的数据,科学家们发现,在火山爆发后的几个小时内,飓风风速和不寻常的电流在电离层(地球在太空边缘的带电上层大气层)形成。 2022年1月15日,洪加汤加-洪加哈帕伊火山爆发,造成了许多影响,其中一些在此处进行了说明,在全世界乃至太空都能感受到这些影响。其中一些影响,如极端风和异常电流,由NASA的ICON任务和ESA(欧洲航天局)的Swarm探测到。图像不按比例缩放。 影像来源:NASA’s Goddard Space Flight Center/Mary Pat Hrybyk-Keith 加州大学伯克利分校物理学家布莱恩·哈丁(Brian Harding)在一篇讨论这一发现的新论文中担任主要作者,他说:“这座火山造成了我们在现代所见过的最大的太空扰动之一。”。“它让我们能够测试人们对低层大气和太空之间的联系知之甚少的现象。” “这座火山造成了我们在现代看到的最大的太空扰动之一。” 加州大学伯克利分校的物理学家、讨论这一发现的新论文的第一作者布莱恩·哈丁说。“它使我们能够测试低层大气与太空之间鲜为人知的联系。” ICON于2019年发射升空,旨在确定地球天气如何与太空天气相互作用——这是一个相对较新的想法,取代了之前的假设,即只有来自太阳和太空的力才能在电离层边缘创造天气。2022年1月,当航天器经过南美洲时,它在电离层中观测到了由南太平洋火山触发的一次地球扰动。 “这些结果令人兴奋地展示了地球上的事件如何影响太空天气,以及太空天气如何影响地球。”位于华盛顿特区的NASA总部的NASA太阳物理部门的空间天气主管吉姆·斯潘说。“全面了解太空天气最终将帮助我们减轻其对社会的影响。” GOES-17卫星拍摄了2022年1月15日洪加汤加-洪加哈帕伊火山水下喷发产生的伞云图像。新月形的弓形冲击波和无数的雷击也可见。 影像来源:NASA Earth Observatory image by Joshua Stevens using GOES imagery courtesy of NOAA and NESDIS 当火山爆发时,它将一股巨大的气体、水蒸气和灰尘喷向天空。爆炸还在大气中造成巨大的压力扰动,导致强风。随着风向上扩展到更薄的大气层,它们开始移动得更快。当强风到达电离层和太空边缘时,ICON记录的风速高达450英里/小时,这是该任务自发射以来测量的120英里高度以下的最强风速。 在电离层,极端的风也会影响电流。电离层中的粒子有规律地形成一股向东流动的电流,称为赤道电射流,由低层大气中的风提供动力。火山爆发后,赤道电喷流的峰值功率激增到正常功率的5倍,并急剧转向,在短时间内向西流动。 “看到地球表面发生的事情大大逆转了电喷流,这非常令人惊讶。”加州大学伯克利分校物理学家、这项新研究的合著者乔安妮·吴说。“这是我们之前只在强地磁暴(一种由太阳的粒子和辐射引起的太空天气)中见过的情况。” 这项发表在《地球物理研究快报》杂志上的新研究,增加了科学家对电离层如何受到地面和太空事件影响的理解。强赤道电喷流与电离层中物质的重新分布有关,这会干扰全球定位系统和通过该区域传输的无线电信号。 了解我们大气层的这个复杂区域在面对来自下方和上方的强大力量时如何反应是NASA研究的一个关键部分。NASA即将进行的地球空间动力学星座(Geospace Dynamics Constellation,简称GDC)任务将使用一组小型卫星,就像地面上的天气传感器一样,跟踪流经该地区的电流和大气风。通过更好地理解电离层电流的影响因素,科学家们可以更好地预测由此类干扰引起的严重问题。 了解我们大气层的这一复杂区域在面对来自上下的强大力量时如何反应是NASA研究的关键部分。NASA即将启动的NASA即将进行的地球空间动力学星座(Geospace Dynamics Constellation,简称GDC)任务将使用一组小型卫星,就像地面上的天气传感器一样,来跟踪该地区的电流和大气风。通过更好地了解影响电离层电流的因素,科学家们可以更有准备地预测由这种干扰引起的严重问题。 参考来源: https://www.nasa.gov/feature/goddard/2022/sun/nasa-mission-finds-tonga-volcanic-eruption-effects-reached-space
对于新的太阳观测航天器来说,第一次太阳喷发总是特别的。 2021年2月12日,距离发射还有一年多的时间,欧洲航天局(ESA)和美国宇航局(NASA)的太阳轨道飞行器捕捉到了这一日冕物质抛射,或称CME。这张照片来自该任务的SoloHI仪器——太阳轨道日球成像仪的简称——该仪器可以观察太阳和行星之间的太阳风、尘埃和宇宙射线。 这是一个简短的、颗粒状的视图。太阳轨道飞行器的遥感要到11月才进入全面科学模式。SoloHI使用四个探测器中的一个,其频率低于正常频率的15%,以减少获取的数据量。尽管如此,敏锐的眼睛仍然可以发现突然爆发的粒子,即CME,正在逃离太阳,它在镜头的右上方。日冕物质抛射在视频的半途中以明亮的爆发开始——日冕物质抛射密集的前缘——并向屏幕左侧漂移。 太阳轨道日球成像仪(SoloHI)观测到的第一次日冕物质抛射,或称CME,表现为一股突然的白色阵风(日冕物质抛射的密集锋面),并扩展成太阳风。本视频使用差分图像,通过从当前图像中减去前一张图像的像素来突出变化。图片中最右边的缺失点是一个过度曝光的区域,来自航天器太阳能阵列的光被反射到SoloHI的视野中。出现在我们视野中的黑白方块是遥测块,是压缩图像并将其传回地球时产生的伪影。 影像来源:ESA & NASA/Solar Orbiter/SoloHI team/NRL 对于SoloHI来说,捕捉到这个CME是一个愉快的意外。当喷发到达航天器时,从地球的角度看,太阳轨道飞行器刚刚从太阳后面经过,正绕着另一边返回。在计划这项任务时,团队并不期望在那段时间内能够记录任何数据。 “但是自从我们计划了这个之后,地面站和技术都得到了升级,”华盛顿特区美国海军研究实验室SoloHI的首席研究员罗宾·科拉尼诺(Robin Colaninno)说,“所以我们实际上得到了比原来计划的更多的下行链路时间。于是SoloHI眨了眨眼睛,捕捉到了它的第一次日冕物质抛射。” 太阳轨道飞行器上的另外两个成像仪——欧洲航天局的极端紫外线成像仪和Metis——也捕捉到了日冕物质抛射的图像。请阅读更多有关欧空局对此次活动的报道。 NASA的STEREO-A航天器,即日地关系观测站的简称,也从它的COR2探测器上瞥见了这一景象,COR2探测器挡住了太阳明亮的圆盘,以观察太阳风中其他微弱的现象。 由太阳轨道飞行器的太阳轨道日球成像仪观测到的第一次日冕物质抛射。 影像来源:NASA/STEREO/COR2 回到地球上,NASA的月球到火星空间天气分析办公室模拟了日冕物质抛射在太阳系中的轨迹,以追踪它在太阳系中的轨迹。标有红色菱形的太阳轨道器和红色方形的STEREO-A的位置显示了它们不同的有利位置。 SoloHI在2021年2月12日观测到的日冕物质抛射的模拟路径。最左边的图显示太阳在中心呈白色圆圈,内行星和一些航天器在轨道上的位置出现。中间和右边的面板显示了同一模型的不同角度,聚焦在地球上。 影像来源:NASA’s Goddard Space Flight Center/M2M/CCMC NASA的航天器已经观测日冕物质抛射数十年了,但太阳轨道飞行器仍然是一个改变游戏规则的工具。“在过去的25年里,我们已经意识到在太阳和地球表面之间发生了很多日冕物质抛射,”科拉尼诺说。“所以我们希望通过更靠近太阳来获得这些外流物的更高分辨率的图像。” 太阳轨道飞行器已经拍摄了迄今为止最接近太阳的照片,而且它只会越来越近。太阳轨道飞行器的正式任务在11月开始,届时SoloHI和其他的遥感仪器将以全科学模式启动。敬请期待! 参考来源: https://www.nasa.gov/feature/goddard/2021/a-new-space-instrument-captures-its-first-solar-eruption
2020年2月,美国国家航空航天局(NASA)的太阳动力学观测台(Solar Dynamics Observatory,SDO)迎来了在太空的第10年。在过去十年间,这艘航天器一直在对太阳进行观测,研究如太阳活动是如何产生以及太阳是如何驱动空间天气的。空间天气是一个动态的系统,会影响整个太阳系,包括地球。 自2010年2月11日发射升空以来,SDO已经收集了数百万张太阳的科学图像,使科学家们对其运转有了新的见解。SDO对太阳的测量 – 从太阳内部结构到大气、磁场以及能量输出 – 都非常有助于增进我们对它的了解。SDO的图像也变得具有标志性 – 如果你曾经看到过太阳活动的特写,则很可能就是SDO所拍摄的图像。 SDO在太空中的漫长职业生涯使它得以见证了几乎一整个太阳周期 – 为期11年的太阳活动周期。以下是SDO多年来取得的一些突出成就: 1)太阳耀斑 SDO已经观测到无数惊人的耀斑 – 太阳表面等离子体的剧烈爆发 – 其中许多已经成为太阳剧烈活动的标志性图像。最初的一年半中,SDO观测到近200次太阳耀斑,使科学家们发现了“后期耀斑”(late phase flare)模式。他们发现其中约15%在最初的耀斑发生几分钟到几小时后产生“后期耀斑”。通过这项研究,科学家们对太阳爆发时产生了多少能量有了更好的了解。 2)太阳龙卷风 2012年2月,SDO拍摄到了太阳表面奇怪的等离子体龙卷风的图像。后来的观测发现,这些等离子体龙卷风的旋涡状结构由太阳表面的磁场形成,能够以高达每小时18.6万英里的时速在太阳表面上肆虐。相比之下,地球龙卷风的时速通常只能达到最高每小时300英里。 [rml_read_more] 这段视频是由NASA的SDO航天器拍摄的图像拼接而成,显示了30个小时期间的潜在等离子体龙卷风。 版权:: NASA戈达德太空飞行中心 3)大尺度日冕波(又称EIT波) 太阳表面汹涌的等离子体海洋能够产生巨大的波浪,以高达每小时300万英里的速度在太阳表面移动。太阳和太阳风层探测器(Solar and Heliospheric Observatory,SOHO)首次发现了这些波,并以SOHO搭载的极紫外成像望远镜(Extreme-ultraviolet Imaging Telescope,EIT)将其命名为EIT波。2010年,SDO对EIT波进行了高分辨率成像。这些观测首次显示了EIT波是如何在太阳表面上移动的。科学家们推测这些波是由日冕物质抛射引起的,日冕物质抛射将太阳表面的等离子云抛射出太阳并进入太阳系。 4)彗星 这些年来,SDO观测到两颗掠日彗星。2011年12月,科学家们目睹了洛夫乔伊彗星(Comet Lovejoy)在距离太阳表面51.6万英里的高空成功地经受住了高温炙烤。而2013年的伊森彗星(Comet ISON)则没能幸免。通过诸如此类的观测,SDO为科学家们提供了有关太阳与彗星相互作用的新信息。 如上所示,洛夫乔伊彗星经过一个小时飞行,达到与太阳最近的距离后,从太阳的右侧飞走。通过追踪彗星如何与太阳的大气、日冕相互作用,以及来自彗尾的物质如何沿着太阳的磁场线移动,科学家们希望能对日冕有更多的了解。该视频由SDO在波长171埃的极紫外波段拍摄,通常以黄色显示。 版权:NASA / SDO 5)全球环流 由于没有固体表面,整个太阳由于试图逃逸的强烈热量和太阳的旋转而不断流动。在太阳中纬度地区,存在一种被称为“Meridonial circulation”的大规模环流模式。SDO的观测结果显示,这些环流比科学家们最初认为的要复杂得多,而且与太阳黑子的产生有关。这些环流模式或许还可以解释为什么有时候太阳黑子在太阳的一个半球比另一个半球聚集得更多。 6)预测未来 日冕物质抛射(coronal mass ejections,CMEs)和太阳风(solar wind)疾驶通过太阳系。当它们与地球的磁场相互作用时,会驱动空间天气,这可能会对航天器和宇航员造成危险。利用来自SDO的数据,NASA的科学家们对CME在穿越太阳系时的路径进行了建模,以预测它对地球的潜在影响。太阳观测的长基线也帮助科学家形成了更多的机器学习模型(machine-learning models),旨在预测太阳何时可能发生CME事件。 7)日冕暗化 太阳稀薄超高温的外层大气(日冕)有时会变暗。研究日冕暗化(coronal dimming)现象的科学家发现,日冕暗化与CMEs有关。CMEs是导致严重空间天气事件的主要原因,这些极端天气事件会破坏卫星并对宇航员造成伤害。通过对SDO观测到的大量事件进行统计分析,科学家们得以计算出对地日冕物质抛射(Earth-directed CMEs)的质量和速度,这是CMEs中最危险的类型。通过将日冕暗化与CMEs的规模联系起来,科学家们希望能够研究其他恒星周围的空间天气效应,因为这些恒星距离地球太远,无法直接测量它们的CMEs。 8)太阳周期的起始 经过10年的观测,SDO现在已经观测到将近完整的一个为期11年的太阳周期。SDO的观测始于第24个太阳活动周期的初期,它观测到太阳活动逐渐增强达到太阳活动极大期(solar maximum),然后逐渐减弱进入目前所处的太阳活动极小期(solar minimum)。这些多年观测帮助科学家们了解一个太阳周期结束和下一个太阳周开始的信号。 9)极区冕洞 有时,太阳的表面会出现大片暗黑区域,被称为冕洞(coronal holes),冕洞在极紫外SDO图像显得较暗。冕洞的出现与太阳磁场有关,遵循太阳周期,在太阳活动极大期增加。在太阳的顶部和底部形成的冕洞,被称为极区冕洞(polar coronal holes)。SDO科学家们能够利用极区冕洞的消失来确定太阳磁极何时反转 – 这是太阳何时达到太阳活动极大期的关键标志。 这幅图由NASA的SDO于2015年3月16日拍摄,其中显示了两片暗色区域,即冕洞。位于下方的极区冕洞是几十年来观测到的最大的冕洞之一。 版权:NASA / SDO 10)新型磁爆炸 2019年12月,SDO的观测令科学家们发现了一种全新类型的磁爆(magnetic explosion),称作自发磁重联(spontaneous magnetic reconnection,与之前所观测到的更为普遍的磁重联形式相对),帮助证实了一个已有几十年历史的理论。同时,或许还能帮助科学家们理解为什么太阳大气如此炎热,更好地预测空间天气,并引领受控核聚变和实验室等离子体实验领域的突破。 NASA的SDO所拍摄的图中首次显示了由太阳日珥引起的强制磁重连(Forced magnetic reconnection)现象。这幅图显示的是于2012年5月3日所拍摄的太阳,其中的插图显示了由SDO的大气成像仪(Atmospheric Imaging Assembly)拍摄到的磁重连现象的特写,其中标志性的X形特征清晰可见。 版权:NASA / SDO /Abhishek Srivastava/ 印度理工学院瓦拉纳西分校(IIT,BHU) SDO上搭载的所有仪器仍处于良好状态,在未来10年仍有可能可以继续发挥作用。 NASA的SDO每12秒捕获10种不同波长的太阳图像,这提供了前所未有的清晰图像,了解太阳上的大爆炸是如何演化和爆发的。图像也很迷人,使人可以透过太阳的大气层,即日冕,观看持续不断的太阳物质“芭蕾舞”。今年是SDO发射十周年,也是其观测太阳第十年的开始。 版权:NASA戈达德太空飞行中心 SDO将在其第10年迎来ESA和NASA联合进行的新任务 – 太阳轨道飞行器(Solar Orbiter)任务。通过倾斜轨道,太阳轨道飞行器将可以瞥见SDO观测有限的极地地区。太阳轨道飞行器还搭载了辅助性设备,以使两项任务能够共同创建太阳的可见表面以下的内部结构的3D图像,使科学家对未来几年的太阳活动有更深入的了解。 来源:https://www.nasa.gov/feature/goddard/2020/ten-things-we-ve-learned-about-the-sun-from-nasa-s-sdo-this-decade
从2月7日在NASA肯尼迪航天中心发射前的科学简报中下载相关材料。 这将是一个漆黑的冬天的夜晚,太阳轨道飞行器从佛罗里达发射升空,前往地球上所有光的来源,即太阳。 这次任务由欧洲航天局和NASA合作,计划于2020年2月9日开始,在美国东部时间晚上11点03分开启的两个小时的发射窗口期间,两吨重的宇宙飞船将由联合发射联盟的阿特拉斯五号火箭从卡纳维拉尔角发射。 为了观察太阳的南北两极,太阳轨道飞行器将会离开黄道平面——与太阳赤道大致平行的空间带,行星就是通过黄道平面运行的。飞船掠过地球,反复绕着金星飞行,将会靠近太阳,并向黄道上方爬升,直到能鸟瞰两极。 在那里,太阳轨道飞行器将试图回答关于太阳的基本问题,太阳的每一次打嗝和微风都会影响太阳系。是什么驱动了太阳风,也就是从太阳不断吹来的带电粒子的阵风?或者,是什么在太阳内部深处的搅动产生了它的磁场?太阳的磁场是如何形成日光层,即由我们的恒星控制的广阔空间? “这些问题并不新鲜,”位于马德里的欧洲空间天文学中心的欧洲航天局副项目科学家亚尼斯·佐加内利斯说。“我们仍然不了解我们太阳的基本情况。” 太阳轨道飞行器任务概述 来源: NASA’s Goddard Space Flight Center/Joy Ng 在解决这些谜题的过程中,科学家们试图更好地了解太阳是如何影响太空天气的,太空条件可能会影响宇航员、卫星以及无线电和GPS等日常技术。 在接下来的七年中,太阳轨道飞行器将向太阳移动约2600万英里,大约是地球到恒星距离的三分之二。它将在黄道上方爬升24度,以便看到两极和太阳的远端。 太阳轨道器高度倾斜轨道的一部分的动画。 来源:ESA/ATG medialab “我们不知道会看到什么,”位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心的美国宇航局副项目科学家特雷莎·尼维斯·钦奇利亚说。 “在未来几年,我们对太阳的看法将发生很大变化。” 使它的灼热之旅成为可能的是一个隔热板,上面有一层黑色的磷酸钙涂层,这是一种类似木炭的粉末,类似于数万年前用于洞穴壁画的颜料。除了一架望远镜外,其他所有的望远镜都通过隔热板上的小孔进行观测。在最接近的时候,防护罩的正面将接近1000华氏度,而隐藏在护罩后面的仪器将保持在在零下4华氏度到零下122华氏度之间的舒适范围内。 因为地球绕着黄道平面旋转,所以我们无法从远处清楚地看到两极。这有点像试图从山脚瞥见珠穆朗玛峰的顶峰。至关重要的是,在科学家用来预测太阳活动的太空天气模型中,两极仍然缺失。 就像地球的南北两极一样,太阳的两极是与太阳其他部分截然不同的极端地区。它们被日冕洞覆盖,更冷的区域是快速太阳风的发源地。在那里,科学家们希望找到太阳活动下的打结磁场的足迹。许多人认为,随着太阳活动季节从高峰转向低谷,两极掌握着下一个太阳活动周期(大约每11年一次)强度的第一手线索。 太阳轨道飞行器有10个强大的仪器阵列,就像轨道上的实验室,专门研究太阳及其爆发的细节。 荷兰欧洲空间研究与技术中心的ESA项目科学家丹尼尔·穆勒说:“太阳轨道飞行器的独特之处在于它结合了高分辨率的成像和现场仪器,获得了我们还没有看到的视角。” 穆勒说,理想情况下,太阳轨道飞行器将拍摄太阳表面的太阳风气泡,并研究从太阳吹过航天器时那阵风的特性。科学家们将首次能够精确地绘制出太阳辐射的来源。 欧洲航天局有效载荷管理人员安妮·帕克罗斯说,这些仪器也被设计成协同工作,增强了它们的观测能力。当像X射线的太阳耀斑一样短暂的东西在表面闪耀时,航天器的X射线仪器就会看到,并提醒其他人注意。 “它们会进入爆发模式,在这种模式下,它们可以更快地获取更多数据,实时响应太阳活动,”帕克罗斯说。“这将为我们提供更多的科学依据。” 太阳轨道飞行器的目的地在很大程度上是未知的,是一个很少被探索的日光层区域。它独特的有利位置是全面了解太阳活动和周期的关键。“太阳轨道飞行器”定期提供太阳远侧的图像,以及第一批太阳两极的图像,它加入了NASA太阳物理学任务小组,以了解太阳如何影响地球和所有行星的空间。 “我们所有这些惊人的任务都位于我们想要研究的地方,”位于华盛顿的NASA总部太阳物理学部门主任尼古拉·福克斯说。“它们的存在使我们能够进行大系统科学研究,比仅仅一个任务所能完成的科学研究更多。” 特别是,太阳轨道飞行器将与NASA的帕克太阳探测器紧密合作。这两个是天生的队友。他们将共同为我们提供这颗恒星前所未见的全球视野。 这两个飞行器使新的多点测量成为可能;这些对于追踪来自太阳的气流如何发展和变化是有用的。当帕克太阳探测器近距离采样热的太阳能气体时,太阳轨道飞行器可以告诉我们更多关于帕克飞过的空间的信息。或者,它们可能同时在日冕(太阳大气)中成像相同的结构,分享来自两极和赤道的视角。两个飞行器将在不同的地点进行协调观察。 “帕克太阳探测器和太阳轨道飞行器一起进入轨道,是一个巨大的里程碑,”尼维斯-钦奇利亚说。“这是太阳物理学家数十年来一直在等待的事情。在未来十年,两者必将共同改变这一领域。” 发射后,操作小组将进行三个月的试运行,以确保仪器正常运行。一旦这个检验期结束,现场仪器就会启动;直到2021年11月太阳轨道飞行器第一次接近太阳之前,遥感仪器将一直处于巡航模式。 太阳轨道飞行器是欧洲航天局和美国宇航局之间的国际合作任务。欧洲航天局在荷兰的欧洲空间研究和技术中心(ESTEC)负责发展工作。位于德国的欧洲空间操作中心(ESOC)将在发射后运行太阳能轨道飞行器。太阳能轨道飞行器由空客防务与航天公司建造,包含10个仪器:其中9个由欧空局成员国和欧空局提供。 了NASA提供了一个仪器——SoloHI和一个额外的传感器——重离子传感器,它是太阳风分析仪(SWA)仪器套件的一部分。 参考: https://www.nasa.gov/feature/goddard/2020/esa-nasa-solar-orbiter-launch-voyage-to-sun-heat-shield