地球和月球曾经共享一个磁场屏障,保护它们的大气层

地球和月球曾经共享一个磁场屏障,保护它们的大气层

45亿年前,地球表面是一个危险而炎热的世界。此外,在我们还只是一个蹒跚学步的孩子时,太阳以猛烈的辐射爆发轰击我们的星球,称之为耀斑和日冕物质抛射。被称为太阳风的带电粒子流威胁着我们的大气层。简而言之,我们的星球是不适合居住的。 地球和月球,这是20世纪90年代伽利略号任务拍摄的两张照片的合成图,有着悠久的共同历史。数十亿年前,它们的磁场相互连接。 影像来源:美国国家航空航天局/喷气推进实验室/美国地质调查局 但是一个邻近的地盾可能帮助我们的星球保持它的大气层,并最终发展生命和适宜居住的条件。美国国家航空航天局(NASA)在《科学进展》杂志上发表的一项研究称,这个保护层就是月球。 “月球似乎为地球提供了一个抵御太阳风的实质性屏障,这对地球在此期间维持大气层的能力至关重要。”NASA首席科学家、这项新研究的主要作者吉姆·格林(Jim Green)说,“我们期待着在NASA通过阿耳忒弥斯项目将宇航员送往月球时,对这些发现进行后续研究。阿耳忒弥斯项目将带回月球南极的关键样本。” 月球简史 根据主流理论,月球形成于45亿年前,当时我们的地球还不到1亿年之久,一个名为忒亚(Theia)的火星大小的物体撞击到原始地球上。碰撞产生的碎片聚集成月球,而其他残余物重新融入了地球。由于重力,月亮的存在稳定了地球的自转轴。那时,我们的地球自转得更快,一天只有5个小时。 在早期,月球离我们也很近。由于月球的引力作用在海洋上,水会被略微加热,能量就会被消耗掉。这就导致月球以每年1.5英寸的速度远离地球,或者说大约是两个两个10美分硬币的宽度。随着时间的推移,这就足够了。到40亿年前,月球离地球的距离是现在的三分之一——大约8万英里,而现在的距离是23万8千英里。在某个时刻,月球也变得“潮汐锁定”,这意味着地球只能看到月球的一面。 物理学家曾经认为,月球从未有过一个持久的全球磁场,因为它的核心很小。磁场使电荷沿着看不见的线移动,这些线在两极向月球弯曲。科学家们很早就知道地球的磁场,这种磁场在北极和南极地区形成了色彩艳丽的极光。 磁场起着屏蔽作用,使电荷沿着它看不见的线移动。科学家们很早就知道地球的磁场,这种磁场在北极和南极地区形成了色彩艳丽的极光。在地球深处,液态铁和液态镍的运动仍然在流动,这是因为地球形成过程中留下的热量。这些运动产生的磁场构成了围绕地球磁层的保护性气泡。 通过对阿波罗任务中月球表面样本的研究,科学家们发现月球曾经也有一个磁层。这些封存了几十年的样本,最近用现代技术进行了分析,证据不断增加。 像地球一样,月球形成时产生的热量会使铁保持在月球内部深处流动,但由于月球的大小,铁的流动时间不会那么长。 “这就像烤蛋糕:你把它从烤箱里拿出来,它还在冷却,”格林说。“质量越大,冷却所需的时间就越长。” 磁屏蔽 这项新的研究模拟了大约40亿年前地球和月球磁场的变化。物理学家们建立了一个计算机模型来观察磁场在各自轨道的两个位置的行为。 科学家们写道,在某些时候,月球的磁层可能会成为地月系统遭受强烈太阳辐射的屏障。这是因为,根据这个模型,月球和地球的磁球在每个天体的两极区域都有磁性连接。对于地球的演化很重要的一点是,高能的太阳风粒子不能完全穿透耦合磁场并剥离大气层。 当月球有磁场时,地球就会被屏蔽,不受太阳风的影响,如图所示。 影像来源:美国国家航空航天局 但地球和月球也有一些大气交换。来自太阳的极端紫外线会将地球最高层大气中的中性粒子中的电子剥离,使这些粒子带电,并使它们能够沿着月球磁场线前往月球。这可能也是当时月球保持稀薄大气的原因之一。月球岩石样本中氮的发现支持了这样一种观点,即以氮为主的地球大气层促成了月球的古代大气及其地壳。 科学家们计算出,地球和月球的磁球结合在一起的磁场共享情况可能在41亿到35亿年前一直存在。 根据一项新的研究,这幅图显示了地球和月球在数十亿年前都有连接在一起的磁场,这有助于保护它们的大气层免受太阳粒子流的破坏。 影像来源:美国国家航空航天局 “了解月球磁场的历史不仅有助于我们了解早期大气,还有助于我们了解月球内部是如何演变的,”美国宇航局副首席科学家和研究合著者大卫·德雷珀(David Draper)说。“它告诉我们月球的核心可能是什么样子的——可能是在其历史的某个时刻液态和固态金属的结合——这是月球内部如何工作的一个非常重要的谜团。” 随着时间的推移,随着月球内部的冷却,我们最近的邻居失去了磁层,最终失去了大气层。磁场在32亿年前就显著减少,在大约15亿年前消失。如果没有磁场,太阳风就会将大气层剥离。这也是火星失去大气层的原因:太阳辐射将大气层剥离。 图中显示了地球今天产生的磁场线。月球不再有磁场。 影像来源:美国国家航空航天局 科学家们说,如果我们的月球在关键的早期起到了保护我们的星球免受有害辐射的作用,那么在银河系中,可能还有其他的卫星在类地系外行星周围,以类似的方式帮助它们的主行星保持大气层,甚至有助于创造适宜居住的条件。这对研究生命起源和寻找地球以外的生命的天体生物学领域来说是很有意义的。 人类探索可以告诉我们更多 这项模拟研究为地球和月球的远古历史如何有助于地球早期大气的保存提供了思路。神秘而复杂的过程很难弄清楚,但来自月球表面的新样本将提供解开谜团的线索。 随着NASA计划通过阿耳忒弥斯项目在月球上建立一个可持续的人类存在,可能会有多种机会来验证这些想法。当宇航员从地球和月球磁场联系最紧密的月球南极带回第一批样品时,科学家可以寻找地球古代大气的化学特征,以及由陨石和小行星撞击产生的水等挥发性物质。科学家们对月球南极数十亿年来从未见过阳光的地区——即“永久阴影区”——特别感兴趣,因为严酷的太阳粒子不会带走挥发性物质。 例如,氮和氧可能沿着磁场线从地球到月球,并被困在这些岩石中。 格林说:“来自这些永久阴影区域的重要样本对于我们理清地球挥发物质的早期演化,检验我们的模型假设至关重要。” 论文的其他合著者是来自巴尔的摩县马里兰大学的斯科特·博德森(Scott Boardsen)和新泽西州普林斯顿大学的董传飞(Chuanfei Dong)。 来源: https://www.nasa.gov/feature/earth-and-moon-once-shared-a-magnetic-shield-protecting-their-atmospheres

哈勃拍摄了月球

哈勃拍摄了月球

This image from 1991 shows Earth’s Moon, with its dark basaltic mare, clearly visible in great detail. Our Moon is Earth’s only natural satellite, unlike several other planets in our solar system. For example, gas giant Jupiter has more than 70 known moons. Learn more about the Moon and participate in International Observe the Moon Night. #ObserveTheMoon Credit: Lick Observatory/ESA/Hubble 这张1991年的照片展示了地球的卫星,以及它的玄武岩海,非常清晰可见。 与我们太阳系中的其他几个行星不同,我们的月球是地球上唯一的天然卫星。 例如,天然气巨星木星有70多个已知的卫星。 了解有关月球的更多信息,并参加国际观测月球之夜。 #ObserveTheMoon 来源: Lick Observatory/ESA/Hubble

OSIRIS-REx小行星采集样品任务开始倒计时

OSIRIS-REx小行星采集样品任务开始倒计时

来源:NASA NASA的源光谱释义资源安全风化层辨认探测器(Origins Spectral Interpretation Resource Identification Security Regolith Explorer,OSIRIS-REx)任务即将到来的历史性时刻。短短几周内,机器人OSIRIS-REx航天器将下降到小行星贝努的巨石表面,着陆几秒钟,并收集小行星的岩石和尘土样本——这标志着首次采集小行星样本,这些样本将被送回地球进行研究。 10月20日,任务团将首次尝试“即触即走”(Touch-And-Go,TAG)样品采集任务。 这一系列的操作将使飞船降落到夜莺地点,该地位于贝努北半球直径52英尺(16 m)的岩石区域,飞船的机械取样臂将尝试在那里收集样本。夜莺地点之所以被选为这次任务的主要样本地点,是因为它拥有最多的不受阻碍的细粒物料,但该地区周围是大块的巨石。在采样过程中,这艘大型货车大小的航天器将尝试在一个只有几个停车位大小的区域着陆,而且距离这些巨石只有几步之遥。 10月20日,OSIRIS-REx飞船将进行第一次“即触即走”(TAG)样本采集任务。该航天器不仅将使用创新的导航技术导航到火星表面,而且还将收集自阿波罗任务以来最大的样本。 来源:NASA’s Goddard Space Flight Center 在为期4.5小时的样本采集过程中,飞船将进行三次不同的操作,以到达小行星表面。下降过程从OSIRIS-REx点燃推进器进行脱离轨道操作开始,执行轨道偏离操作,离开它的安全轨道,距离本努地表约2500英尺(770米)。在这个下行轨道上飞行了4个小时后,飞船在大约410英尺(125米)的高度执行“检查点”操作,推进器燃烧调整OSIRIS-REx的位置和速度,使其急剧下降到小行星表面。大约11分钟后,飞船在大约177英尺(54米)的高度进行了“匹配点”燃烧,减缓了下降速度,并瞄准了与小行星接触时的旋转相匹配的路径。然后飞船下降到小行星表面,在不到16秒的时间内着陆并发射了三个加压氮气瓶中的一个。气体搅动并提升了贝努表面的物质,这些物质随后被吸附在飞船的收集器头上。在这次短暂的接触之后,OSIRIS-REx发射推进器,使其远离贝努的表面,并导航到距离小行星安全距离的地方。 离开轨道后,航天器将进行一系列重新配置以准备采样。首先,OSIRIS-REx将其自动采样臂(即取即走样品采集机构(TAGSAM))从折叠位置延伸到样品采集位置。然后,飞船的两个太阳能电池板在飞船的身体上方移动成“ Y型”构型,从而在降落过程中将它们安全地定位在远离小行星表面的位置。这种配置还将航天器的重心直接放在TAGSAM收集器头上,这是航天器中唯一在样本收集过程中会接触贝努表面的部分。 由于TAG期间航天器和贝努距离地球大约2.07亿英里(3.34亿公里),因此信号在它们之间传播大约需要18.5分钟。这种时滞会阻止TAG事件期间从地面实时指挥飞行活动,因此该航天器被设计为自动执行整个样本采集序列。在活动开始之前,OSIRIS-REx团队将把所有命令上行到航天器,然后发送“ GO”命令开始。 由于飞船和和贝努在TAG期间距离地球约2.07亿英里(3.34亿公里),信号在它们之间传播大约需要18.5分钟。这个时间延迟阻止了在标签事件期间从地面对飞行活动的实时指挥,所以航天器被设计为自主地执行整个样本采集序列。在活动开始之前,欧西里斯-雷克斯团队将把所有的指令发送到飞船上,然后发送“出发”命令开始。 为了自主导航到夜莺地点,OSIRIS-REx使用了自然特征跟踪(NFT)导航系统。航天器在脱离轨道大约90分钟后开始收集导航图像。然后,使用已识别的表面特征,将这些实时图像与机载图像目录进行比较,以确保其朝着正确的方向行驶。当航天器接近地面时,OSIRIS-REx根据NFT对航天器位置和速度的估计来更新检查点和匹配点的操作。OSIRIS-REx在进行匹配点操作后降落到地面时,继续使用NFT估算来监测其位置和下降速度。如果航天器的轨迹变化超出预定范围,它将自动自主中止。 为了确保航天器降落在一个安全区域,避免该区域的许多岩石,导航系统配备了一个夜莺危险地图,它描绘了样本区域内可能对航天器造成潜在伤害的区域。如果航天器的NFT系统检测到它正在接近这些危险区域之一,航天器将在到达16英尺(5米)的高度时自动离开接近区域,这保证了航天器的安全,并允许在未来的日期进行后续的样本收集尝试。 当飞船执行采样序列中的每一个事件时,它将以非常缓慢的数据传输速度将遥测更新发送回OSIRIS-REx团队。该团队将在飞行过程中监测遥测技术,并能够确认TAG发生后不久,飞船已成功降落到本努的表面。在这次活动中收集到的图像和其他科学数据将在航天器远离小行星后向下传输,并将其较大的天线指向地球,以更高的通信速率进行传输。 OSIRIS-REx计划收集至少2盎司(60克)的贝努岩石材料,并将其带回地球——这是自阿波罗计划以来从太空返回的最大样本——该任务开发了两种方法来验证这些样本的收集。10月22日,OSIRIS-REx的SamCam相机将捕捉到TAGSAM头部的图像,以确定它是否含有贝努的表面物质。10月24日,该航天器还将进行旋转操作,以确定收集到的物质的质量。如果这些措施显示采集成功,将决定将样本放入样本返回舱(SRC)返回地球。如果没有从夜莺中收集到足够的样本,飞船上还会装载氮气进行另外两次尝试。在鱼鹰后备地点的TAG尝试将不早于2021年1月进行。 任务团队在过去的几个月中一直为样品采集活动做准备,同时将远程工作最大化作为其应对COVID-19的一部分。在TAG当天,有限的小组成员将采取适当的安全预防措施,从洛克希德·马丁航天公司的任务支持区监视航天器。团队的其他成员也将在现场的其他地点进行报道,同时遵守安全规程。 该航天器计划于2021年离开本努,并将于2023年9月24日将收集到的样本送到地球。 NASA位于马里兰州格林贝尔特的戈达德太空飞行中心为OSIRIS-REx提供总体任务管理、系统工程以及安全和任务保证。图森市亚利桑那大学的但丁·劳雷塔(Dante Lauretta)是首席研究员,亚利桑那大学还领导科学团队以及该团队的科学观测计划和数据处理。丹佛的洛克希德·马丁航天公司制造了该航天器并提供飞行操作。Goddard和KinetX Aerospace负责OSIRIS-REx航天器的导航。OSIRIS-REx是NASA新边界计划的第三项任务,该计划由位于阿拉巴马州亨茨维尔的NASA马歇尔航天飞行中心管理,隶属于该机构在华盛顿的科学任务理事会。 参见: https://www.nasa.gov/feature/goddard/2020/osiris-rex-begins-its-countdown-to-tag

木星上的月影

木星上的月影

Jupiter’s volcanically active moon Io casts its shadow on the planet in this dramatic image from NASA’s Juno spacecraft. As with solar eclipses on the Earth, within the dark circle racing across Jupiter’s cloud tops one would witness a full solar eclipse as Io passes in front of the Sun. Such events occur frequently on Jupiter because it is a large planet with many moons. In addition, unlike most other planets in our solar system, Jupiter’s axis is not highly tilted relative to its orbit, so the Sun never strays far from Jupiter’s equatorial plane (+/- 3 degrees). This means Jupiter’s moons regularly cast their shadows on the planet throughout its year. Juno’s close proximity to Jupiter provides an exceptional fish-eye view, showing a small…

月球表面“生锈了”,而参与反应的氧气和水来自哪里呢?

月球表面“生锈了”,而参与反应的氧气和水来自哪里呢?

虽然我们的月球没有空气,但研究表明,月球表面存在化学成分为三氧化二铁(Fe2O3)的赤铁矿,这是一种通常需要氧气和水才会形成的铁锈形式,这让科学家感到困惑不已。 1973年,NASA的水手10号(Mariner 10)所观测到的月球,在当时,研究还没有在月球没有空气的表面上发现任何生锈的迹象。 图片来源:NASA/喷气推进实验室/西北大学(Northwestern University) 长期以来,以铁锈文明的是火星。火星表面上的铁,再加上古代曾经存在过的水和氧气,赋予了火星红色的外表。但是,科学家最近惊讶地发现,有证据表明表面没有空气的月球也“生锈”了。 《科学进展》(Science Advances)上的一篇新论文回顾了印度空间研究组织(IndianSpace Research Organization,ISRO)的月船一号(Chandrayaan-1)轨道探测器的数据,这架轨道器在2008年对月球表面进行调查时发现了水冰可能存在的证据,并绘制出了多种矿物质位置图。论文的主要作者、来自夏威夷大学(University of Hawaii)的李帅(音译,Shuai Li)研究后发现,月船一号上的月球矿物质测绘仪(Moon Mineralogy Mapper,M3)的数据中,存在着大量水的迹象。月球矿物质测绘仪由美国航空航天局(NASA)位于南加州的喷气推进实验室(Jet Propulsion Laboratory,JPL)所建造。水与岩石相互作用会产生多种矿物质,M3检测到的光谱,或者说从月球表面反射的光,表明月球两极的组成与其余部分完全不同。 印度空间研究组织月船一号轨道飞行器上的月球矿物制测绘仪(M3),合成了上面这张图像,图中的蓝色区域显示,水集中在月球的两极。仔细分析两极的岩石光谱后,研究人员发现了赤铁矿,也就是一种铁锈形式的迹象。 图片来源:ISRO/NASA/加州理工-喷气推进实验室/布朗大学(Brown University)/美国地质调查局(United States Geological Survey,USGS) 对于这一点,李帅非常感兴趣,他将目光集中到月球的两极光谱。尽管富含铁的岩石在月球表面四处散布,但在发现月球两极的光谱数据与赤铁矿如此匹配时,他仍然感到惊讶不已。赤铁矿是铁暴露在氧气和水中产生的一种铁的氧化物,也就是铁锈的一种形式,但在月球上应该是不会有氧气或者液态水的,它究竟是怎么生锈的呢? 月球金属之谜 要解开这个谜团,一切还得从太阳风(solar wind)说起。太阳风是从太阳上层大气中射出的超高速等离子体带电粒子流,以氢气为主要成分轰击着地球和月球。氢气的存在会让赤铁矿难以形成,因为它是一种还原剂,在化学反应中通常会被相互作用的原子夺去电子,而这恰恰与产生赤铁矿的反应原理相反:为了让铁生锈,需要有一种氧化剂夺去铁原子的电子。对于地球而言,我们拥有强大的地球磁场将太阳风中的氢气隔绝在外,但月球却没有这样的保护罩。 “这令人非常困惑,”李帅表示,“月球的环境非常不利于赤铁矿的形成。”因此,他找到了JPL的科学家阿比盖尔·弗雷曼(Abigail Fraeman)和维维安·孙(Vivian Sun),帮他梳理分析M3的数据,并确认他真的在月球两极发现了赤铁矿。 “一开始的时候,我是完全不相信的态度。考虑到月球的环境,它(赤铁矿)是不应该存在的。”弗雷曼说,“但是自从我们在月球上发现了水之后,人们就一直在猜测,如果水与岩石发生过反应,那么月球上可能存在着比我们所想象的更多的矿物质。” 在仔细的观察和分析后,弗雷曼和孙确信:M3的数据的确表明月球两极是存在赤铁矿。孙说:“最后,光谱数据明确的体现了赤铁矿的存在,而至于它为什么存在于月球表面,我们还需要一个合理的解释。” 三种关键成分 他们的论文提供了一个“三管齐下”的模型,来解释在月球环境中为什么能形成铁锈。 首先,尽管月球没有自己的大气层,但实际上它还是拥有微量的氧气,这些氧气的来源正是我们的地球。地球的磁场就像一个风袋一样,在地球后侧有较长的拖拽。2007年的时候,日本的辉夜号(Kaguya,又称辉夜姬号、月亮女神号)轨道飞行器发现,来自地球上层大气的氧气可以顺着这种延伸的磁尾飘荡出去,这是众所周知的,地球上的这些氧气可以飞行239 000英里(385 00千米)到达月球。 这一发现与M3的数据相吻合,M3的数据表明,相比背对地球的那一侧,在月球面向地球的一侧所发现的赤铁矿数量更多。李帅表示:“这表明地球的氧气可能在推动着赤铁矿的形成。”在过去数十亿年间,月球一直在一点一点地远离地球,所以当两者在遥远的过去相距较近时,可能有更多的氧气跃过了这个距离。 还有第二个需要解决的问题,那就是太阳风输送来的所有这些氢气。作为还原剂,氢气应该会防止氧化反应的发生,但地球磁场的磁尾在这里也起到了中介作用。磁尾部分除了将氧气从我们的星球运送到月球之外,还在月球饶轨运行的某些时期阻挡了99%以上的太阳风,特别是在月相为满月的时候,这就为月球打开了特定的周期性窗口,让铁锈能得以形成。 谜团的第三个部分则是水,尽管月球的大部分地方都完全干涸了,但在月球另一侧被阴影覆盖的月球陨石坑中,科学家们发现了水冰。然而,赤铁矿的发现地点却又离发现水冰的地方很远。李帅认为,相比在月球表面发现的水分子,更可能是定期飞掷到月球上的快速移动的尘埃粒子释放了月球表面含有的水分子,在冲击到月球表面时与土壤中的铁混合。一方面,撞击产生的热量可以提高氧化反应的速度;另一方面,这些尘埃粒子本身可能也携带了水分子,随着撞击穿入月球表面,从而与铁混合。在恰好合适的时机,也就是当月球因地球磁尾的阻挡受不到太阳风的侵扰且存在氧气时,可能就会发生形成赤铁矿的化学反应。 要确定水和岩石之间相互作用的确切方式,还需要更多的数据。这些数据还可能有助于解释另一个谜团:为什么在月球的另一侧仍然有少量的赤铁矿形成,毕竟地球的氧气在理论上并不能到达月球背面。 更多的月球探索将带来更多月球科学 弗雷曼说,这种模型还可以解释在其他没有空气的星体(如小行星)上发现的赤铁矿:“可能是少量的水和尘埃颗粒的撞击让这些星体中的铁生锈了。” 李帅指出,这是月球科学一个激动人心的时刻。自上一次阿波罗(Apollo)计划登月以来的将近50年后,月球再次成为了一个主要的探索目的地。作为阿耳忒弥斯(Artemis)计划的一部分,NASA计划从明年开始向月球发射数十种新的仪器和技术实验,然后从2024年开始进行人类探月任务。 JPL还为名为“月球开拓者号”(Lunar Trailblazer)的轨道器建造了M3的新版本,其中一个仪器是高分辨率挥发物和矿物质月球测绘仪(High-resolutionVolatiles and Minerals Moon Mapper,HVM3),它将绘制月球上永远处在阴影中的陨石坑内的水冰位置图,或许还能揭示有关赤铁矿的新细节。 “我认为这些结果表明,太阳系中发生的化学过程比我们此前意识到的还要复杂。”孙说道,“我们可以通过在未来发射前往月球的任务,来检验这些假设,从而更好地理解它们。” 参考来源: https://www.nasa.gov/feature/jpl/the-moon-is-rusting-and-researchers-want-to-know-why

搜寻流浪行星

搜寻流浪行星

虽然我们对太阳系很熟悉,但它其实可能有些不为人知的古怪之处。银河系拥有许多行星围绕恒星运行。不过我们发现了根本不围绕任何恒星运行的行星,它们独自在银河系中漂流(除非有卫星相伴)。这类行星被称为流浪行星( rogue planets)。 https://nasa.tumblr.com 流浪行星源自何处? 行星的形成过程相当混乱。科学家认为,行星是在年轻恒星周围被称为原行星盘的气态尘埃盘中形成的,气体尘埃不断聚集形成更大的天体。 碰撞和近距离接触有时会使行星脱离其母恒星的引力束缚,形成流浪行星。不过流浪行星也可能形成于孤立的尘埃气体云,这些尘埃气体云因规模太小而无法创生出恒星。 https://nasa.tumblr.com 看见原先所看不见的行星 科学家已经发现了4000多颗系外行星,但只有少数是流浪行星。因为流浪行星很难被发现!流浪行星对我们来说几乎完全看不见,因为它们不能像恒星同样本身发出耀眼的光芒,而且宇宙也漆黑一片。这就像是在没有手电筒的情况下,在一间暗房里寻找一只黑猫。 天文学家寻找行星时,一般都是通过它所围绕运行的恒星来进行寻找的,观测围绕轨道运行的行星可能对母恒星产生的微小影响。但这对流浪行星却不起作用,因为它们没有围绕恒星运转。此外,流浪行星通常温度很低,所以也无法利用红外线望远镜的热视觉找到它们。 那么我们怎样才能找到流浪行星呢?天文学家利用一种奇妙的宇宙现象,通过流浪行星对星光的影响来探测它们。当地球、流浪行星和遥远的背景恒星排成一列时,流浪行星会扭曲增强背景恒星的星光。这种现象被称为引力微透镜效应(Microlensing),看起来是如下所示: https://nasa.tumblr.com 想象你有一个蹦床,一个高尔夫球和一个看不见的保龄球。如果你把保龄球放在蹦床上,即使你不能直接看到球,你也能看到它是如何在蹦床上留下凹痕的。如果你在它附近滚动高尔夫球,它会改变高尔夫球的路径。 流浪行星对太空的影响就像保龄球扭曲蹦床一样。当来自一颗遥远恒星的光经过一颗流浪行星时,会在发生扭曲(就像上面的动画中它在恒星周围弯曲一样)。如果地球上的天文学家观察这颗恒星,他们会注意到恒星会短暂地变亮。亮度尖峰的形状和持续时间会使天文学家们知道那里有一颗行星存在,即使行星本身无法被看见。 https://nasa.tumblr.com 地面望远镜必须透过地球的湍流大气来搜寻流浪行星。但当南希•格蕾丝•罗曼太空望远镜(Nancy Grace Roman Space Telescope)于本世纪20年代中期发射后,将处于地球大气层之外(甚至比月球还远),这将为观测遥远的恒星以及流浪行星提供更好的视角。 其他的太空望远镜必须非常幸运才能发现这些百万分之一的引力微透镜信号。但是罗曼太空望远镜会花几个月的时间观察大片的天空来捕捉这些转瞬即逝的信号。 https://nasa.tumblr.com 来自流浪行星的教训 科学家们已经提出了不同的模型来解释不同的行星系统是如何随着时间的推移而形成和变化的,但我们仍然不知道哪些是正确的。这些模型对流浪行星做出了不同的预测,所以研究这些流浪行星可以帮助我们发现哪种模型最有效。 当罗曼太空望远镜发现微小的透镜状星光光点时,天文学家就能通过光点持续的时间,很好地了解产生该信号的天体的质量。科学家们希望这项任务能探测到数百颗流浪行星,这些行星的体积小至火星(大约是地球的一半大小),大至气态巨行星,比如木星和土星。 https://nasa.tumblr.com 按照设计目的,罗曼太空望远镜只打算在银河系的一小片区域寻流浪行星。科学家们想出了一个机智的方法,利用罗曼太空望远镜未来的数据来估计整个银河系中有多少流浪行星。这些信息将帮助我们更好地了解太阳系,知道相比银河系的其他星系,太阳系是相当普通还是有点古怪。 https://nasa.tumblr.com 罗曼太空望远镜将有非常广阔的视野,其捕捉到的视野几乎是哈勃太空望远镜的100倍。这项任务将帮助我们了解除了流浪行星之外的各种各样的有趣的事情,比如暗能量和暗物质,这将帮助我们更好地了解我们在太空中的处境。 欲了解关于罗曼太空望远镜的更多信息,请戳阅:https://roman.gsfc.nasa.gov/。

火星双子峰

火星双子峰

NASA’s Mars Pathfinder mission landed on the Red Planet on July 4, 1997. It’s tiny rover, named Sojourner after abolitionist Sojourner Truth, spent 83 days of a planned seven-day mission exploring the Martian terrain, acquiring images, and taking chemical, atmospheric and other measurements. When the Mars Pathfinder spacecraft approached its destination, no NASA mission had successfully reached Mars in more than 20 years.The final data transmission received from Pathfinder was at 10:23 UTC on September 27, 1997. This image shows the Twin Peaks, which are modest-size hills to the southwest of the Mars Pathfinder landing site. They were discovered on the first panoramas taken by the IMP camera on the July 4, and subsequently identified in Viking Orbiter images taken more than 20 years before….

斯皮策拍摄了恒星全家福

斯皮策拍摄了恒星全家福

In this large celestial mosaic taken by NASA’s Spitzer Space Telescope and published in 2019, there’s a lot to see, including multiple clusters of stars born from the same dense clumps of gas and dust. Some of these clusters are older than others and more evolved, making this a generational stellar portrait. This image is of the Cepheus C and Cepheus B regions and combines data from Spitzer’s IRAC and MIPS instruments. The grand green-and-orange delta filling most of the image is a faraway nebula, or a cloud of gas and dust in space. Though the cloud may appear to flow from the bright white spot at its tip, it is actually what remains of a much larger cloud that has been carved away by…

揭开太阳系形状之谜

揭开太阳系形状之谜

利用美国航空航天局(NASA)任务获得的数据,科学家开发出了一个模型,对围绕我们太阳系的“泡泡”形状进行了新的预测。 更新后的模型表明,太阳所支配或控制的区域形状,即日球层(图中黄色部分)的形状,可能是瘪掉的羊角面包状,而不是其他研究提出的长尾彗星状。 图片来源:梅拉夫•奥弗等 我们太阳系中的所有行星,都包裹在一个磁泡(magnetic bubble)之中,太阳不断喷涌而出的物质,也就是太阳风(solar wind),在太空中日复一日地雕刻出了这个磁泡,而在磁泡之外的则是星际介质(interstellar medium),即充盈在银河系恒星系统之间的电离气体和磁场。当太阳围绕着银河系的中心运行时,磁泡会在太空中游走,多年以来,科学家一直在试图回答的一个问题,就是这个磁泡的形状是什么样的。传统来说,科学家认为日球层(heliosphere,太阳风吹入星际物质的空间中形成的磁性气泡)的形状类似彗星:前端被称为“鼻头”(nose),呈圆球状,尾部拖着一个长长的尾巴。 然而,今年3月份发表在《自然•天文学》(Nature Astronomy)上的一项研究(DOI: 10.1038/s41550-020-1036-0),在7月份又登上了杂志的封面,提出了另一种没有长长尾巴的形状:瘪掉的羊角面包状。 日球层的形状很难从内部进行测量,距离地球最近的日球层边缘也在超过一百亿千米之外的地方,到目前为止,只有两个旅行者号(Voyager)探测器对这片区域进行了直接测量,仅留下了有关日球层形状两个位点的真实数据。 在近地的条件下,我们研究太阳系与星际空间交界的方法,是捕获和观察飞向地球的粒子,这其中包括来自遥远银河系部分的、被称作银河系宇宙射线(galactic cosmic rays)的带电粒子,以及已经存在于我们太阳系中的粒子,它们奔向日球层的边缘,并通过一系列复杂的电磁过程反弹回到地球。这些粒子属于高能中性原子(energetic neutral atom),由于它们是通过与星际介质相互作用而产生的,所以成为了绘制日球层边缘形状的有效数据来源,这也就是NASA的星际边界探测器(Interstellar Boundary Explorer,IBEX)任务研究日球层的方法:利用这些粒子作为“太空雷达”,描摹出太阳系在星际空间中的边界。 一些研究表明,日球层拥有一个长长的尾巴,形状非常接近彗星,不过新模型提出了一个没有这种长长尾巴的形状。 图片来源:NASA科学可视化工作室(Scientific Visualization Studio)/概念成像实验室(Conceptual Imaging Lab) 为了理解这些复杂的数据,科学家利用计算机模型将它们转化为日球层形状特征的预测。这项新研究的主要作者是梅拉夫•奥弗(Merav Opher),他主管着由NASA和美国国家科学基金会(NSF)资助的波士顿大学(Boston University)希尔德•德赖弗科学中心(SHIELD DRIVE Science Center),专注于日球层形状的预测。 此外,NASA的新视野号(New Horizons)任务还提供了拾起离子(pickup ion)的测量数据,这是一种在太空中被电离然后被太阳风“拾起”并随之一同移动的粒子。由于它们的来源与从太阳中射出的太阳风粒子并不相同,因此拾起离子比其他太阳风粒子的温度要高得多,奥弗的工作就是建立在这一基础事实之上。 “有两种流体混合在一起,其中一种成分温度很低,而另一种温度要高得多,也就是拾起离子,”波士顿大学的天文学教授奥弗说道,“如果你有一些很冷的流体,还有一些很热的流体,然后把它们放在太空中,它们是不会混合在一起的,通常会分头发展下去。我们所做的就是将太阳风的这两个成分分开,然后对日球层的三维形状进行建模。” 将太阳风的组成部分一分为二,再加上奥弗早期的工作,即将太阳磁场视作塑造日球层形状的主要驱动力,就得出了瘪掉的羊角面包形状:有两个喷嘴从日球层中间圆鼓鼓的部分向外卷曲,并且非常显眼的是没有了许多科学家所预测的长尾巴彗星形状。 “由于拾起离子在热力学中起主导作用,因此整体上呈现球形的状态。但是由于它们在最终的冲击之后很快就离开了系统,整个日球层就显示出瘪掉的样子。”奥弗说道。 太阳系护盾的形状 解决日球层的形状问题不仅仅是为了满足学术上的好奇心,而是因为日球层能作为太阳系的护盾,抵御银河系其余部分的冲击。 我们的日球层会阻止许多宇宙射线抵达太阳系中的行星,这里动画中的亮条纹即表示宇宙射线。 图片来源:NASA戈达德航天飞行中心(Goddard Space Flight Center)/概念成像实验室 像超新星(supernova)这样的其他恒星系统中的高能事件,可以将粒子加速到接近光速的速度。这些粒子向各个方向高速飞出,有一部分也会飞向我们的太阳系,但是,日球层却能起到护盾的作用:对于本将会进入太阳系中的这些高能粒子(银河系宇宙射线),它吸收了大约四分之三。 而剩下成功进入太阳系的高能粒子可能会造成严重的破坏,对于地球上的我们而言,地球磁场和大气层提供了又一层保护,但是太空或其他星球上的探索技术和宇航员却暴露在外。在银河系宇宙射线的作用下,电子设备和人体细胞都会遭受损害,而且由于这些粒子携带了大量的能量,我们很难以实用的太空旅行方式对它们进行阻挡。日球层是太空之旅过程中抵御银河系宇宙射线的主要防御手段,因此了解它的形状,以及它对射向我们太阳系的银河系宇宙射线的影响,是规划机器任务和人类太空探索的关键考虑因素。 日球层的形状也是解开其他星球生命探寻难题的重要一环,来自银河系宇宙射线的有害辐射会让某个星球世界不适宜生命存在,而由于我们拥有日球层这一强大的天体护盾,太阳系中才能有生命存活。当我们进一步了解了日球层对我们太阳系的保护作用,以及这种保护在整个太阳系历史上可能的演变过程时,我们就可以更好地寻找其他具有类似保护作用的恒星系统。而形状就是其中一个重要性质:我们的日球层看起来究竟是有着长长尾巴的彗星形状,还是瘪掉的羊角面包状,又或完全是其他的某种样子呢? 如果科学家弄清了我们的日球层形状是更类似于左侧BZ Cam相对较短的星际球层(astrosphere),还是更像右侧Mira的长尾形星际球层,又或完全是某种其他的形状,将会有助于我们研究系外行星(exoplanet)潜在的宜居性。 图片来源:NASA /卡萨莱尼奥(Casalegno)/星系演化探测器(GALEX) 无论日球层真正的形状是什么样子,NASA即将迎来的一项新任务,也就是星际测绘与加速度探测器(Interstellar Mapping and Acceleration Probe,IMAP),都将为解决上述问题带来助益。 IMAP计划于2024年发射,将绘制从日球层边界流回地球的粒子地图。IMAP将以IBEX任务的技术和发现为基础,为日球层、星际空间的性质以及银河系宇宙射线进入太阳系的方式提供新的思路。 奥弗的希尔德•德赖弗科学中心旨在为IMAP的发射及时创建可测试的日球层模型,他们对日球层形状和其他特征的预测,以及从边界反射后流回地球的粒子是如何反映出日球层形状的研究,将给科学家比较IMAP的数据提供基准。 参考来源: https://www.nasa.gov/feature/goddard/2020/uncovering-our-solar-system-s-shape

Jezero陨石坑,毅力号火星探测器的着陆点

Jezero陨石坑,毅力号火星探测器的着陆点

This image of Jezero Crater, the landing site for the Mars Perseverance Rover, was taken by instruments on NASA’s Mars Reconnaissance Orbiter, which regularly takes images of potential landing sites for future missions. NASA chose Jezero crater as the landing site for the Perseverance rover because scientists believe the area was once flooded with water and was home to an ancient river delta. Jezero crater tells a story of the on-again, off-again nature of the wet past of Mars. More than 3.5 billion years ago, river channels spilled over the crater wall and created a lake. Scientists see evidence that water carried clay minerals from the surrounding area into the crater lake. Conceivably, microbial life could have lived in Jezero during one or more of…