钱德拉发现一个正在形成的巨型星系团

钱德拉发现一个正在形成的巨型星系团

Astronomers using data from NASA’s Chandra X-ray Observatory and other telescopes have put together a detailed map of a rare collision between four galaxy clusters. Eventually all four clusters — each with a mass of at least several hundred trillion times that of the Sun — will merge to form one of the most massive objects in the universe. Galaxy clusters are the largest structures in the cosmos that are held together by gravity. Clusters consist of hundreds or even thousands of galaxies embedded in hot gas, and contain an even larger amount of invisible dark matter. Sometimes two galaxy clusters collide, as in the case of the Bullet Cluster, and occasionally more than two will collide at the same time. The new observations show…

哈勃太空望远镜从著名的星表中观察星系

哈勃太空望远镜从著名的星表中观察星系

This bright, somewhat blob-like object — seen in this image taken by the NASA/ESA Hubble Space Telescope — is a galaxy named NGC 1803. It is about 200 million light-years away, in the southern constellation of Pictor (the Painter’s Easel). NGC 1803 was discovered in 1834 by astronomer John Herschel. Herschel is a big name in astronomy; John, his father William and his aunt Caroline all made huge contributions to the field, and their legacies remain today. William systematically cataloged many of the objects he viewed in the night sky, named many moons in the solar system, discovered infrared radiation and more. Caroline discovered several comets and nebulas. John took this aforementioned catalog of night-sky objects and reworked and expanded it into his General Catalogue…

当行星碰撞时会发生什么

当行星碰撞时会发生什么

This artist’s concept illustrates a catastrophic collision between two rocky exoplanets in the planetary system BD +20 307, turning both into dusty debris. Ten years ago, scientists speculated that the warm dust in this system was a result of a planet-to-planet collision. Now, NASA’s SOFIA mission found even more warm dust, further supporting that two rocky exoplanets collided. This helps build a more complete picture of our own solar system’s history. Such a collision could be similar to the type of catastrophic event that ultimately created our Moon. Image Credit: NASA/SOFIA/Lynette Cook 这幅艺术概念图描绘了BD +20 307行星系统中两颗岩质系外行星的灾难性碰撞,它们都变成了尘埃碎片。十年前,科学家们推测这个系统中的温暖尘埃是行星对行星碰撞的结果。现在,NASA的SOFIA任务发现了更多温暖的尘埃,进一步证明了两颗岩质系外行星相撞。这有助于我们更全面地了解太阳系的历史。这种碰撞可能类似于最终造成月球的灾难性事件。 来源:NASA/SOFIA/Lynette Cook

哈勃太空望远镜探测到已知的最小的暗物质团块

哈勃太空望远镜探测到已知的最小的暗物质团块

天文学家们利用NASA的哈勃太空望远镜和一项新的观测技术,天文学家发现暗物质形成的团块比以前所知的要小得多。这个结果证实了被广泛接受的“冷暗物质”理论的一个基本预测。 根据这个理论,所有的星系都形成并嵌入在暗物质云中。暗物质本身由缓慢移动的或“冷”粒子组成,它们聚集在一起形成的结构,从质量是银河系几十万倍的,到质量不超过商用飞机重量的团块。(在这里,“冷”指的是粒子的速度。) 哈勃的观测使我们对暗物质的性质和它的活动方式有了新的认识。“我们对冷暗物质模型进行了非常有说服力的观测测试,它出色的通过了。”加州大学洛杉矶分校(UCLA)的TommasoTreu说,他是观察小组的成员之一。 暗物质是一种看不见的物质,它构成了宇宙的大部分质量,并为星系的形成提供了基础。尽管天文学家看不到暗物质,但他们可以通过测量其重力如何影响恒星和星系来间接检测其存在。通过寻找嵌入的恒星来探测最小的暗物质结构可能是困难的或不可能的,因为它们包含的恒星很少。 虽然在大星系和中型星系周围已经发现了暗物质的聚集,但是到目前为止还没有发现更小的暗物质团块。在缺乏观测证据的情况下,一些研究人员提出了替代理论,包括“暖暗物质”。这一观点表明暗物质粒子正在快速移动,速度太快,无法合并形成更小的浓度。新的观测结果并不支持这一假设,发现暗物质比温暖暗物质替代理论认为的“更冷”。 “暗物质比我们在小尺度上所知道的要冷得多,”位于加州帕萨迪纳的NASA喷气推进实验室的AnnaNierenberg说。“天文学家以前已经对暗物质理论进行了其他的观察性测试,但是我们的实验为小块冷暗物质的存在提供了迄今为止最有力的证据。”通过结合最新的理论预测、统计工具和新的哈勃观测,我们现在得到了比以前更可靠的结果。” 寻找缺乏恒星的暗物质是一项艰巨的任务。然而,哈勃研究小组使用了一种技术,他们不需要寻找恒星作为暗物质示踪剂的引力影响。研究小组瞄准了8个强大而遥远的宇宙“街灯”,这些“街灯”被称为类星体(活跃的黑洞周围发出大量光的区域)。天文学家们测量了在每个类星体的黑洞轨道上运行的氧气和氖气体发出的光是如何被一个巨大的前景星系的引力扭曲的,该星系起着放大镜的作用。 每一张哈勃太空望远镜的快照都显示了四张背景类星体及其宿主星系的扭曲图像,它们围绕着一个前景中的大质量星系的中心核心。巨大的前景星系的引力就像一个放大镜,通过一种被称为引力透镜的效应来扭曲类星体的光线。类星体是由活跃的黑洞产生的极其遥远的宇宙街灯。由于前景星系和背景类星体之间需要近乎精确的对齐,这样的四倍类星体图像是罕见的。天文学家利用引力透镜效应探测到迄今为止发现的最小的暗物质团块。这些团块位于望远镜观测到类星体的视线范围内,以及前景透镜星系的内部和周围。暗物质浓度的存在改变了每个扭曲的类星体图像的表观亮度和位置。天文学家将这些测量结果与类星体图像在没有暗物质团块影响的情况下的样子进行了比较。研究人员利用这些测量数据来计算微小暗物质浓度的质量。哈勃望远镜的广角相机3号捕获了每个类星体的近红外光,并将其分散成不同的颜色,以便进行光谱研究。这些照片拍摄于2015年至2018年。 来源:NASA,ESA,A.Nierenberg(JPL)andT.Treu(UCLA) 通过这种方法,研究小组发现了沿着望远镜视线到类星体的暗物质团块,以及在这些相互干涉的透镜星系内和周围的暗物质团块。哈勃探测到的暗物质浓度是银河系暗物质晕质量的1/10000到1/100000倍。许多这些微小的星系群很可能甚至不包含小星系,因此用传统的寻找嵌入恒星的方法是不可能探测到它们的。 暗物质团块的存在改变了每个扭曲的类星体图像的表观亮度和位置。天文学家将这些测量结果与类星体图像在没有暗物质影响的情况下的样子进行了比较。研究人员利用这些测量数据来计算微小暗物质浓度的质量。为了分析数据,研究人员还开发了复杂的计算程序和密集的重建技术。 “想象一下,这八个星系中的每一个都是一个巨大的放大镜,”加州大学洛杉矶分校的研究小组成员丹尼尔·吉尔曼解释说。“小小的暗物质团块就像放大镜上的小裂缝一样,改变了这四幅类星体图像的亮度和位置,这与你在放大镜光滑时看到的景象形成了对比。” 研究人员利用哈勃的广角相机3号捕捉到每个类星体发出的近红外光,并将其分散成不同的颜色,用光谱学进行研究。背景类星体独特的发射物在红外线下最容易被看到。“哈勃望远镜的太空观测使我们能够在星系系统中进行这些测量,而这些测量是用较低分辨率的地面望远镜无法实现的,而地球的大气层对于我们需要观测的红外光是不透明的。”加州大学洛杉矶分校的研究小组成员Simon Birrer解释说。 Treu补充说:“令人难以置信的是,经过近30年的运行,哈勃望远镜使我们能够对基础物理学和宇宙的本质进行前沿观察,这是我们在发射哈勃望远镜时做梦也没想到的。” 引力透镜是通过对地面调查(例如斯隆数字天空调查和暗能量调查)进行筛选而发现的,这些调查提供了有史以来最详尽的宇宙三维地图。类星体距离地球大约100亿光年;而前景星系距离地球大约20亿光年。 该图形说明了一个遥远的类星体的光是如何被一个巨大的前景星系和沿着光路聚集的微小暗物质改变的。星系强大的引力扭曲并放大了类星体的光,产生了四张扭曲的类星体图像。这些暗物质聚集在哈勃太空望远镜观测到的类星体的视线范围内,以及前景星系的内部和周围。暗物质团块的存在改变了每一个被扭曲的类星体图像的表观亮度和位置,通过扭曲和轻微弯曲光线从遥远的类星体传播到地球,如图中扭动的线条所示。天文学家将这些测量结果与类星体图像在没有暗物质团块影响的情况下的样子进行了比较。研究人员利用这些测量数据来计算微小暗物质浓度的质量。类星体的四倍图像很少见,因为它的背景类星体和前景星系需要近乎完美的排列。 来源:NASA, ESA and D. Player (STScI) 研究中发现的小结构的数量为暗物质的性质提供了更多的线索。“暗物质的粒子特性会影响形成多少团块。”尼伦伯格解释说。“这意味着你可以通过计算小团块的数量来了解暗物质的粒子物理学。” 但是,构成暗物质的粒子类型仍然是个谜。“目前,实验室没有直接证据表明存在暗物质颗粒。”比勒说。“根据对宇宙暗物质的观察,如果宇宙学家不说暗物质存在,粒子物理学家甚至不会谈论暗物质。当我们的宇宙学家谈论暗物质时,我们在问’它如何控制宇宙的出现,在什么尺度上?” 天文学家将能够使用未来的NASA太空望远镜,如詹姆斯·韦伯太空望远镜和广域红外探测望远镜(WFIRST),对暗物质进行后续研究,这两个望远镜都是红外天文台。韦伯将能够有效地获得所有已知的四透镜类星体的这些测量数据。WFIRST望远镜的清晰度和大视野将有助于天文学家观察受大型星系和星系团巨大引力场影响的整个空间区域。这将有助于研究人员发现更多此类稀有系统。 研究小组将在夏威夷檀香山召开的美国天文学会第235届会议上公布他们的研究结果。 哈勃太空望远镜是NASA和ESA(欧洲航天局)之间国际合作的项目。位于马里兰州格林贝尔特的NASA戈达德太空飞行中心负责管理该望远镜。位于马里兰州巴尔的摩市的太空望远镜科学研究所(STScI)负责哈勃的科学运作。STScI由位于华盛顿特区的天文学研究大学协会为NASA运营。 来源: https://www.nasa.gov/feature/goddard/2020/hubble-detects-smallest-known-dark-matter-clumps

NASA的“行星猎人”发现了第一个地球大小的宜居地带

NASA的“行星猎人”发现了第一个地球大小的宜居地带

TOI 700系统的三颗行星围绕着一颗小而冷的M矮星运行。TOI 700d是TESS发现的第一个地球大小的宜居带。 影像来源:NASA’s Goddard Space Flight Center NASA的凌日系外行星勘测卫星(TESS)在其恒星的宜居带发现了第一颗地球大小的行星。宜居带是指在适宜的距离范围内,适宜液态水存在的星球。科学家们利用NASA的斯皮策太空望远镜确认了这一名为TOI 700d的发现,并模拟了这颗行星的潜在环境,以帮助未来的观测。 迄今为止,TOI 700 d是在恒星的宜居带中发现的仅有少数几个地球大小的行星之一。其他还包括TRAPPIST-1系统中的几颗行星以及NASA开普勒太空望远镜发现的其他行星。 “ TESS的设计和发射是专门为寻找围绕附近恒星运行的地球大小的行星而设计的,”位于华盛顿的NASA总部天体物理学部门主管Paul Hertz说。“在太空和地球上,用更大的望远镜追踪附近恒星周围的行星是最容易的。发现TOI 700 d是TESS的一项关键科学发现。斯皮策太空望远镜确认了这颗行星的大小和适居带的状态,对斯皮策来说是另一项胜利,因为它将于今年1月结束科学运作。” TESS的设计和发射是专门用来寻找地球大小的行星围绕附近的恒星运行。 NASA的凌日系外行星勘测卫星(TESS)在其恒星的宜居带发现了第一颗地球大小的行星。宜居带是指在适宜的距离范围内,适宜液态水存在的星球。科学家们利用NASA的斯皮策太空望远镜确认了这一名为TOI 700d的发现,并模拟了这颗行星的潜在环境,以帮助未来的观测。 影像来源:NASA’s Goddard Space Flight Center TESS每次对大片天空进行27天的监控,这些区域被称为扇区。从我们的角度来看,这种长时间的凝视使卫星能够跟踪由一颗绕轨道运行的行星在其恒星前方过境所引起的恒星亮度变化,这一事件被称为凌日。 TOI 700是一颗小而冷的M矮星,位于100光年之外天南星座之一的剑鱼座。它的质量和大小大约是太阳的40%,表面温度大约是太阳的一半。这颗恒星出现在任务第一年TESS观测到的13个扇区中的11个中,科学家们通过它的三个行星捕捉到了多次凌日现象。 这颗恒星最初在TESS数据库中被错误分类为与我们的太阳更相似,这意味着这些行星看起来比实际更大、更热。几名研究人员,包括和TESS团队成员一起工作的高中生奥尔顿·斯宾塞(Alton Spencer),发现了这个错误。 “当我们修正了这颗恒星的参数后,它的行星尺寸减小了,我们意识到最外层的行星与地球差不多大,而且位于宜居带。”芝加哥大学的研究生艾米丽·吉尔伯特(Emily Gilbert)说。“此外,在11个月的数据中,我们没有看到恒星产生耀斑,这增加了TOI 700d适宜居住的机会,并使其更容易建立其大气和表面条件的模型。” 吉尔伯特和其他研究人员在火奴鲁鲁举行的美国天文学会第235次会议上公布了他们的发现,三篇论文(吉尔伯特领导的其中一篇论文)已提交给科学期刊。 最里面的行星称为TOI 700b,几乎与地球大小一样,可能是岩石构成的。每10天完成一次轨道运行。中间的这颗行星,TOI 700c,比地球大2.6倍,大小介于地球和海王星之间,每16天绕轨道运行一次,很可能是一个以气体为主的星球。TOI 700d是太阳系中已知的最外层行星,也是唯一一颗位于宜居带的行星,体积比地球大20%,每37天绕轨道运行一次,并从其恒星接收太阳向地球提供的86%的能量。人们认为所有行星都被潮汐锁定在其恒星上,这意味着它们每绕一个轨道旋转一次,以使一侧在日光下不断沐浴。 马萨诸塞州剑桥市天体物理中心|哈佛和史密森尼中心的天文学家约瑟夫·罗德里格斯带领一组科学家,要求用斯皮策进行后续观测,以确认TOI 700d。 “考虑到这一发现的影响——这是TESS发现的第一颗地球大小的宜居带行星——我们真的希望我们对这个系统的理解尽可能具体。”罗德里格斯说。“斯皮策在我们预期的时间看到了TOI 700d的凌日。这是对任务传承的极大补充,它帮助确认了两颗TRAPPIST-1行星,并确定了另外五颗。” 斯皮策的数据增强了科学家们的信心,他们相信TOI 700d是一颗真正的行星,并将其轨道周期的测量值提高了56%,大小提高了38%。它还排除了其他可能导致凌日信号的天体物理学原因,比如在星系中存在一个更小、更暗的伴星。 罗德里格斯和他的同事们还利用全球拉斯坎布雷斯天文台网络中1米地面望远镜的后续观测,将科学家对TOI 700c的轨道周期和大小的信心分别提高了30%和36%。 由于TOI 700在附近很亮,而且没有恒星耀斑的迹象,该系统是目前地面天文台精确测量质量的首选。这些测量结果可以证实科学家的推测,即内行星和外行星都是由岩石构成的,而中间的行星是由气体构成的。 未来的任务可能能够确定这些行星是否有大气层,如果有的话甚至可以确定它们的组成。 尽管TOI 700 d的确切条件尚不清楚,但科学家可以利用当前信息(例如行星的大小和它所环绕的恒星的类型)来生成计算机模型并进行预测。位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心的研究人员对TOI 700 d的20种潜在环境进行了建模,以评估是否有任何版本会导致表面温度和压力适于居住。 他们的三维气候模型研究了各种表面类型和大气成分,这些类型和大气成分通常与科学家认为可能适合居住的星球有关。由于TOI 700d被潮汐锁定在它的恒星上,这颗行星的云结构和风模式可能与地球截然不同。 其中一个模拟包括一个海洋覆盖的TOI 700d,其大气密度高,以二氧化碳为主,与科学家们推测的火星年轻时的环境相似。模型大气在面向恒星的一侧有一层厚厚的云。另一个模型将TOI 700d描绘成一个无云的、全陆地版的现代地球,风从行星的夜侧吹来,汇聚在直接面向恒星的点上。 当星光穿过行星的大气层时,它会与二氧化碳和氮等分子相互作用,产生独特的信号,称为光谱线。由大学空间研究协会戈达德大学访问助理Gabrielle Engelmann-Suissa领导的建模团队为TOI 700 d的20个建模版本生成了模拟光谱。 “总有一天,当我们拥有来自TOI 700d的真实光谱时,我们可以回溯,将它们与最接近的模拟光谱匹配,然后将其与模型匹配,”Engelmann-Suissa说。“这很令人兴奋,因为不管我们对这个星球发现了什么,它都将与我们在地球上看到的完全不同。” TESS是NASA的天体物理学探测任务,由麻省理工学院(MIT)领导和运营,由NASA的戈达德太空飞行中心管理。其他合作伙伴包括位于弗吉尼亚州福尔斯彻奇的诺斯罗普·格鲁曼公司、位于加州硅谷的NASA艾姆斯研究中心、马萨诸塞州剑桥的哈佛-史密森天体物理中心、麻省理工学院的林肯实验室、还有巴尔的摩的太空望远镜科学研究所。全世界有十多所大学、研究机构和天文台参与了这项任务。 位于加州帕萨迪纳的喷气推进实验室为位于华盛顿的NASA科学任务理事会管理斯皮策太空望远镜任务。科学运作是在帕萨迪纳加州理工学院的斯皮策科学中心进行的。太空行动基地设在科罗拉多州利特尔顿的洛克希德·马丁太空公司。数据存档于加州理工学院IPAC的红外科学档案。加州理工学院为NASA管理喷气推进实验室。 建模工作是由戈达德的塞勒斯系外环境合作项目资助的,该项目是一个多学科合作项目,汇集了专家来建立全面和复杂的计算机模型,以更好地分析当前和未来的系外行星观测。

SOFIA揭示了天鹅星云如何诞生

SOFIA揭示了天鹅星云如何诞生

欧米茄(Omega)或天鹅星云是我们银河系中最明亮,质量最大的恒星形成区之一,其形状类似于我们今天看到的天鹅脖子。新的观测表明,它的区域是在多个恒星诞生时代分开形成的。来自平流层红外天文观测台(SOFIA)的新图像正在帮助科学家记录这个经过深入研究的星云的历史和演化。 “当今的星云拥有揭示其过去的秘密;我们只需要能够发现它们即可。”位于加州硅谷的NASA艾姆斯研究中心SOFIA科学中心的大学空间研究协会科学家WanggiLim说。“SOFIA使我们能够做到这一点,因此我们可以理解为什么星云会呈现出今天的样子。” 揭开星云的秘密并非易事。它位于5000光年之外的人马座。它的中心充满了银河系中100多颗质量最大的年轻恒星。这些恒星的大小可能是我们的太阳的许多倍,但最年轻的几代恒星正在尘埃和气体的茧中形成,即使用太空望远镜也很难看到它们。由于中心区域发出非常明亮的光,太空望远镜上的探测器在SOFIA所研究的波长处处于饱和状态,类似于过度曝光的照片。SOFIA的红外摄像机被称为“FORCAST”,SOFIA望远镜的红外摄像机可以穿透这些保护层。 天鹅星云的合成图像。SOFIA探测到靠近中心的蓝色区域(20微米),显示出中心的大质量恒星加热产生的气体,而绿色区域(37微米)是大质量恒星和附近的新生恒星加热产生的尘埃。这九颗以前从未见过的原恒星主要是在南部地区发现的。靠近边缘的红色区域代表由赫歇尔太空望远镜(70微米)探测到的冷尘埃,而白色区域则由斯皮策太空望远镜(3.6微米)探测到。太空望远镜无法如此详细地观测到蓝色和绿色区域,因为探测器已经饱和。SOFIA的观测结果显示了星云的部分独立形成的证据,形成了今天看到的天鹅形状。 影像来源:NASA/SOFIA/De Buizer/Radomski/Lim; NASA/JPL-Caltech; ESA/Herschel 这幅新图像显示了九颗原恒星,这是星云团正在坍塌的区域,是恒星诞生的第一步,这是以前从未见过的。此外,研究小组还计算了星云不同区域的年龄。他们发现天鹅形状的部分并不是同时形成的,而是在多个恒星形成时期形成的。 中部地区是最古老,发展最快,最先形成的地区。接下来,形成北部地区,而南部地区是最年轻的地区。尽管北部地区比南部地区更古老,但来自前几代恒星的辐射和恒星风已经扰乱了那里的物质——阻止它坍缩形成下一代。 “这是我们在这些波长范围内看到的最详细的星云图像。”同时也是SOFIA科学中心的高级科学家JimDeBuizer说。“这是我们第一次看到一些最年轻的大质量恒星,并开始真正了解它如何演变成我们今天看到的标志性星云。” 像天鹅星云这样的大质量恒星释放出如此多的能量,以至于它们可以改变整个星系的演化。但是,只有不到百分之一的恒星如此巨大,因此天文学家对其了解甚少。以前用太空望远镜对该星云的观测研究了不同波长的红外光并没有揭示SOFIA探测到的细节。 SOFIA的图像显示,在靠近中心的大质量恒星的加热下,气体呈蓝色,而尘埃呈绿色,现有的大质量恒星和附近的新生恒星使尘埃变暖。新发现的原恒星主要位于南部地区。靠近边缘的红色区域代表由赫歇尔太空望远镜探测到的冷尘埃,而白星区域则是由斯皮策太空望远镜探测到。 在运行超过16年后,斯必泽太空望远镜将于2020年1月30日退役。 SOFIA继续探索红外宇宙,以高分辨率研究其他望远镜无法观测到的中远红外线波长,帮助科学家了解恒星和行星的形成,磁场在塑造我们的宇宙中的作用以及星系的化学演化。 喷气推进实验室。为NASA在华盛顿的科学任务局管理斯皮策太空望远镜任务。科学运作是在帕萨迪纳加州理工学院的斯皮策科学中心进行的。太空行动基地设在科罗拉多州利特尔顿的洛克希德·马丁太空公司。数据存档于加州理工学院IPAC的红外科学档案。加州理工学院为NASA管理喷气推进实验室。 赫歇尔望远镜是欧洲航天局的一项任务,科学仪器由欧洲研究所财团提供,NASA也有重要参与。2013年4月,在液体冷却剂如预期耗尽后,望远镜停止了科学观测,但科学家们继续分析其数据。NASA的赫歇尔项目办公室位于加利福尼亚州帕萨迪纳的NASA喷气推进实验室。喷气推进实验室为赫歇尔的三种科学仪器中的两种提供了任务授权技术。NASA赫歇尔科学中心是IPAC的一部分,它为美国的天文学界提供支持。加州理工学院为NASA管理喷气推进实验室。 SOFIA,平流层红外天文观测站,是一架波音747SP喷气式客机,改装后搭载了一个直径106英寸的望远镜。它是NASA和德国航空航天中心(DLR)的一个联合项目。位于加州硅谷的NASA艾姆斯研究中心与总部位于马里兰州哥伦比亚的大学空间研究协会和斯图加特大学的德国索菲亚研究所(DSI)合作,管理着索菲亚项目、科学和任务运作。这架飞机由位于加州帕姆代尔的NASA阿姆斯特朗飞行研究中心703号楼维护和操作。

哈勃太空望远镜拍摄到了星系的天体亮片

哈勃太空望远镜拍摄到了星系的天体亮片

This smattering of celestial sequins is a spiral galaxy named NGC 4455, located in the northern constellation of Coma Berenices (Berenice’s Hair). This might sound like an odd name for a constellation — and in fact it is somewhat unusual. It’s the only modern constellation to be named in honor of a real person from history: Queen Berenice II of Egypt. The story of Queen Berenice II is an interesting one. A ruling queen of the ancient Greek city of Cyrene in modern-day Libya, and later a queen of Ptolemaic Egypt through her marriage to her cousin Ptolemy III Euergetes, Berenice became known for sacrificing locks of her hair as an offering to ensure her husband’s safe return from battle. Her husband did indeed return…

距离2300万光年的银河烟火

距离2300万光年的银河烟火

A galaxy about 23 million light years away is the site of impressive, ongoing fireworks. Rather than paper, powder and fire, this galactic light show involves a giant black hole, shock waves and vast reservoirs of gas. This galactic fireworks display is taking place in NGC 4258, also known as M106, a spiral galaxy like our own Milky Way. This galaxy is famous, however, for something that our galaxy doesn’t have – two extra spiral arms that glow in X-ray, optical and radio light. These features, or anomalous arms, are not aligned with the plane of the galaxy, but instead intersect with it. The anomalous arms are seen in this new composite image, where X-rays from NASA’s Chandra X-ray Observatory are blue, radio data from…

使用哈勃太空望远镜的考德威尔目录探索夜空

使用哈勃太空望远镜的考德威尔目录探索夜空

During the 18th century, French astronomer Charles Messier compiled a list of over 100 cosmic objects that might fool fellow comet hunters into thinking they had discovered new comets. In the 1980s, an Englishman named Sir Patrick Moore produced an additional list to highlight more cosmic wonders visible to amateur astronomers. Unlike the Messier catalog, which only features objects that were visible from Charles Messier’s viewing location in Europe, Moore’s Caldwell catalog includes celestial bodies that are found in both the northern and southern skies. The catalog consists of 46 star clusters, 35 galaxies and 28 nebulas. Moore intentionally avoided including any of the Messier objects in his catalog, hoping to expand his fellow amateur astronomers’ cosmic horizons. From nearby clouds of gas and dust…

雪花星团

雪花星团

Newborn stars, hidden behind thick dust, are revealed in this image of a section of the so-called Christmas Tree Cluster from NASA’s Spitzer Space Telescope. The newly revealed infant stars appear as pink and red specks toward the center and appear to have formed in regularly spaced intervals along linear structures in a configuration that resembles the spokes of a wheel or the pattern of a snowflake. Hence, astronomers have nicknamed this the “Snowflake Cluster.” Star-forming clouds like this one are dynamic and evolving structures. Since the stars trace the straight line pattern of spokes of a wheel, scientists believe that these are newborn stars, or “protostars.” At a mere 100,000 years old, these infant structures have yet to “crawl” away from their location of…