哑铃星云发出光秀

哑铃星云发出光秀

Infrared light surges out from the Dumbbell Nebula, also known as Messier 27, in this Aug. 10, 2011, image from NASA’s Spitzer Space Telescope. This nebula was discovered in 1764 by Charles Messier. It was the first in a class of objects, now known as planetary nebulae, to make it into Messier’s catalog of astronomical objects. Planetary nebulae, historically named for their resemblance to gas-giant planets, are now known to be the remains of stars that once looked a lot like our Sun. Image Credit: NASA/JPL-Caltech/Harvard-Smithsonian CfA 2011年8月10日,NASA斯皮策太空望远镜拍摄的这张照片中显示了哑铃状星云(也被称为梅西耶27)发出的红外光。这个星云是查尔斯·梅西耶于1764年发现。这是目前被称为行星状星云的一类天体中第一个将其纳入星云星团表的天体。行星状星云,历史上因其与气态巨行星相似而得名,现在被认为是曾经看起来非常像我们太阳的恒星的残骸。 影像来源:NASA/JPL-Caltech/Harvard-Smithsonian CfA

螺旋星系横跨太空

螺旋星系横跨太空

This Jan. 10, 2013, composite image of the giant barred spiral galaxy NGC 6872 combines visible light images from the European Southern Observatory’s Very Large Telescope with far-ultraviolet data from NASA’s Galaxy Evolution Explorer (GALEX) and infrared data acquired by NASA’s Spitzer Space Telescope. NGC 6872 is 522,000 light-years across, making it more than five times the size of the Milky Way galaxy; in 2013, astronomers from the United States, Chile, and Brazil found it to be the largest-known spiral galaxy, based on archival data from GALEX. Image Credit: NASA/ESO/JPL-Caltech/DSS 2013年1月10日,这张巨型棒状螺旋星系NGC 6872的合成图像结合了欧洲南方天文台超大型望远镜的可见光图像、NASA星系演化探测器(GALEX)的远紫外数据和NASA斯皮策太空望远镜的红外数据。NG C6872的直径为522,000光年,是银河系的五倍多;2013年,根据GALEX的档案数据,美国、智利和巴西的天文学家发现它是已知最大的螺旋星系。 影像来源:NASA/ESO/JPL-Caltech/DSS

NASA的哈勃望远镜和斯皮策望远镜发现,两颗系外行星主要成分可能是水

NASA的哈勃望远镜和斯皮策望远镜发现,两颗系外行星主要成分可能是水

由蒙特利尔大学的研究人员领导的一个团队发现了证据,表明围绕一颗红矮星运行的两颗系外行星是“水世界”,水在整个行星中占了很大一部分。这些行星位于天琴座218光年外的一个行星系中,不同于我们太阳系中发现的任何行星。

露齿葫芦装点银河

露齿葫芦装点银河

While observing the outer region of the Milky Way galaxy, our Spitzer Telescope captured this infrared image of a cloud of gas and dust that looks like the hollowed-out pumpkins we see every Halloween. Nicknamed the “Jack-o’-Lantern Nebula,” it was likely created by powerful outflows of radiation and particles from a massive O-type star, about 15 to 20 times heavier than the Sun. The data used to create this image was collected during Spitzer’s “cold mission,” which ran between 2004 and 2009. Image Credit: NASA/JPL-Caltech 在观测银河系外部区域时,NASA的斯皮策望远镜捕捉到了这张由气体和尘埃组成的云团的红外图像,它看起来就像我们每年万圣节都会看到的掏空的南瓜。它被称为“南瓜灯星云”,很可能是由一颗质量约为太阳15到20倍的大质量O型恒星的强大辐射和粒子外流形成。 用于创建这张图像的数据是在2004年至2009年斯皮策的“冷任务”期间收集。 影像来源:NASA/JPL-Caltech

太空蝴蝶

太空蝴蝶

What looks like a red butterfly in space is in reality a nursery for hundreds of baby stars, revealed in this infrared image from NASA’s Spitzer Space Telescope. Officially named W40, the butterfly is a nebula – a giant cloud of gas and dust in space where new stars may form. The butterfly’s “wings” are giant bubbles of hot, interstellar gas blowing from the hottest, most massive stars in this region. The material that forms W40’s wings was ejected from a dense cluster of stars that lies between the wings in the image. The hottest, most massive of these stars, W40 IRS 1a, lies near the center of the star cluster. W40 is about 1,400 light-years from the Sun, about the same distance as the…

NASA发现了天体碰撞产生的巨大碎片云

NASA发现了天体碰撞产生的巨大碎片云

这幅插图描绘了两个小行星大小的天体碰撞的结果:围绕一颗年轻恒星的巨大碎片云。NASA的斯皮策号发现一块碎片云挡住了这颗恒星HD 166191,为科学家提供了发生碰撞的细节。 影像来源:NASA/JPL-Caltech 岩石天体之间的重大碰撞塑造了我们的太阳系。对类似碰撞的观察提供了有关这些事件在其他恒星周围发生频率的线索。 我们太阳系中的大多数岩石行星和卫星,包括地球和月球,都是由太阳系历史早期的大规模碰撞形成或塑造的。通过相互碰撞,岩石天体可以积累更多的物质,增大尺寸,或者它们可以分裂成多个较小的物体。 天文学家使用NASA现已退役的斯皮策太空望远镜,在过去发现了岩石行星正在形成的年轻恒星周围发生此类碰撞的证据。但是,这些观察并没有提供有关碰撞的更多细节,比如所涉及物体的大小。 在天体物理学杂志上的一项新研究中,由亚利桑那大学的凯特·苏领导的一组天文学家报告了首次观测到的由其中一次碰撞产生的碎片云。碎片云在它的恒星前面经过并短暂遮挡了光。天文学家称之为凌日。再加上对恒星大小和亮度的了解,这些观测使研究人员能够在撞击后不久直接确定云团的大小,估计碰撞物体的大小,并观察云团消散的速度。 “目击事件是无可替代的。”亚利桑那大学的乔治·里克是这项新研究的合著者,他说道。 “斯皮策之前报道的所有案件都没有得到解决,只有关于实际事件和碎片云可能是什么样子的理论假设。” 从2015年开始,苏领导的一个团队开始对一颗1000万年前的恒星HD 166191进行常规观测。大约在恒星生命的早期,恒星形成过程中留下的尘埃聚集在一起,形成了一种称为星子的岩石体——未来行星的种子。一旦之前填充这些物体之间空间的气体消散,它们之间灾难性的碰撞就变得很常见。 该团队预计,他们可能会发现HD 166191附近发生碰撞的证据,因此在2015年至2019年期间,他们使用斯皮策望远镜对该系统进行了100多次观测。虽然星子太小,距离太远,望远镜无法分辨,但它们的碰撞会产生大量尘埃。斯皮策探测到了红外光——或比人眼能看到的波长略长的波长。红外线是探测尘埃的理想方法,包括由原行星碰撞产生的碎片。 2018年年中,太空望远镜观测到HD 166191系统变得明显更亮,这表明碎片的产生在增加。在此期间,斯皮策望远镜还探测到一个碎片云挡住了这颗恒星。结合斯皮策对凌日的观测和地面望远镜的观测结果,该团队可以推断出碎片云的大小和形状。 他们的研究表明,云团被拉高了,估计的最小面积是恒星的三倍。然而,斯皮策望远镜所观测到的不断变亮的红外线表明,只有一小部分云团从恒星前方经过,而这一事件产生的碎片覆盖的面积是恒星的数百倍。 要产生这么大的云,主碰撞中的物体必须有矮行星那么大,就像我们太阳系中的灶神星——一个330英里(530公里)宽的天体,位于火星和木星之间的主小行星带。最初的碰撞产生了足够的能量和热量使一些物质汽化。它还引发了第一次碰撞的碎片和系统中其他小物体之间的碰撞连锁反应,这可能产生了斯皮策观测到的大量尘埃。 在接下来的几个月里,巨大的尘埃云体积增大,变得更加透明,这表明尘埃和其他碎片正在迅速扩散到整个年轻的恒星系统中。到2019年,经过恒星前面的云团不再可见,但该系统包含的尘埃是斯皮策观测到云团之前的两倍。这篇论文的作者认为,这些信息可以帮助科学家检验类地行星是如何形成和生长的理论。 “通过观察年轻恒星周围轻恒星周围的尘埃碎片盘,我们基本上可以回顾过去,看看可能塑造了我们自己的太阳系的过程。”苏说。 “了解这些系统中碰撞的结果,我们还可以更好地了解围绕其他恒星形成岩石行星的频率。” 关于斯皮策的更多信息 斯皮策在其生命周期内收集的全部科学数据可通过斯皮策数据档案馆向公众提供,该档案馆位于加利福尼亚州帕萨迪纳加州理工学院IPAC红外科学档案馆中。喷气推进实验室是加州理工学院的一个部门,为位于华盛顿的NASA科学任务理事会管理斯皮策号任务。科学操作在加州理工学院IPAC的斯皮策科学中心进行。航天器操作基地设在科罗拉多州利特尔顿的洛克希德·马丁航天公司。 更多关于NASA斯皮策太空望远镜的信息,请访问: https://www.jpl.nasa.gov/missions/spitzer-space-telescope 和 https://www.ipac.caltech.edu/project/spitzer 参考来源: https://www.nasa.gov/feature/jpl/nasa-spots-giant-debris-cloud-created-by-clashing-celestial-bodies

NASA的斯皮策在天文学会简报上阐述系外行星

NASA的斯皮策在天文学会简报上阐述系外行星

行星XO-3b有一个内部热源,可能来自潮汐加热,这是由于其母星的引力挤压行星内部造成的。产生的热量可能会因行星略呈椭圆形的轨道(如右图所示)而增加,这意味着行星的形状更像椭圆形而不是圆形。 影像来源:NASA/JPL-Caltech 红外线天文台可能有助于回答有关太阳系外行星或系外行星的问题,包括它们是如何形成的以及是什么驱动了它们大气中的天气。 两项新的研究利用了NASA退役的斯皮策太空望远镜的数据,揭示了巨型系外行星和褐矮星,它们既不是恒星,也不是行星。 这两项研究都将成为1月13日美国天文学会主办的虚拟新闻发布会的焦点。 一项调查显示,褐矮星上的天气随年龄的变化而变化。褐矮星形成类似恒星,但没有足够的质量在其核心开始燃烧氢。褐矮星和巨型系外行星在直径、质量和组成方面相似,所以了解其中一颗的大气特性可以帮助我们了解另一颗的大气特性。 第二项研究是关于热木星的研究,热木星是一种气体系外行星,其运行轨道非常靠近它们的母星。这些巨大的行星是如何形成的?是否有不同形成过程的热木星亚型?为了寻找答案,该研究的作者观察了系外行星XO-3b,这是一个罕见的例子,它在靠近其母星时被观察到。 系外行星类似物 年龄往往会给人类带来稳定,对于宇宙物体来说似乎也是如此。 纽约美国自然历史博物馆的天体物理学家约翰娜·沃斯(Johanna Vos)将讨论发表在《天体物理学杂志》上的一项斯皮策调查,该调查发现与年长的褐矮星相比,年轻褐矮星上的天气变化更大。 关于褐矮星,变异性一词指的是来自该天体大气层的不同波长的红外光强度的短期变化。天文学家认为这些变化是由云层引起的,云层反射并吸收大气中的光。 这张插图显示了云在褐矮星大气中的样子。利用NASA退役的斯皮策太空望远镜,科学家们能够探测到褐矮星大气中的云层和其他天气特征。 影像来源:NASA/JPL-Caltech/IPAC/T. Pyle 高变异性可能表明了一个主要的大气特征,可能就像木星的大红斑——一个比地球更大已经旋转了几百年的风暴。它还可以表明大气的快速变化,这可能有多种原因,例如大气中的主要温差或湍流(有时由强风引起)。 将年轻的褐矮星与之前斯皮策对年长褐矮星的观测结果进行比较,作者发现年轻的天体更有可能表现出大气变化。他们还发现,年轻褐矮星的变化更大、更显着。沃斯和她的同事将这种差异归因于这样一个事实:褐矮星在年轻时更蓬松,但随着年龄的增长变得更紧凑,这可能使大气看起来更均匀。 年轻的褐矮星在直径、质量和成分上与主要由气体构成的巨型系外行星相似。但研究巨型系外行星因其母星的近距离存在而变得复杂:它的伴星会照射行星的大气层,从而改变温度,甚至改变化学成分,并影响天气。这颗恒星发出的明亮光线也使看到这颗暗得多的行星变得更加困难。 另一方面,褐矮星可以作为一种对照组,在太空中被孤立地观察。该研究的作者计划将这项新发现纳入褐矮星和巨型系外行星大气如何随年龄演化的模型中。 迁徙的巨人 尽管热木星是研究最多的系外行星类型,但关于它们如何形成的主要问题仍然存在。例如,这些行星是在远离母星的地方形成的——距离足够冷,水分子等可以变成固体——还是更近?第一种情况更符合我们太阳系中行星是如何诞生的理论,但究竟是什么驱使这些类型的行星迁移到离母星如此近的地方,目前尚不清楚。 蒙特利尔麦吉尔大学的系外行星科学家丽莎·邓和她的同事利用斯皮策的数据研究了一颗名为XO-3b的系外行星,它有一个偏心(椭圆)轨道,而不是几乎所有其他已知热木星的圆形轨道。偏心轨道表明XO-3b最近可能已向其母星迁移;如果是这样的话,它最终会进入一个更圆的轨道。 欧洲航天局(ESA)太空观测站盖亚和斯皮策的观测结果都表明,这颗行星自身会产生一些热量,但科学家不知道原因。斯皮策太空望远镜的数据还提供了一张地方网气候模式的地图。过剩的热量可能是通过一种叫做潮汐加热的专业方法,来自地球内部。恒星对行星的引力挤压随着不规则轨道将行星带离恒星越来越近,从而导致行星振荡。由此产生的内部压力变化会产生热量。 对于邓来说,一颗不寻常的热木星提供了一个机会,来测试哪些形成过程可能会产生这些系外行星的某些特征。例如,其他热木星上的潮汐加热是否也是最近迁移的迹象?单靠XO-3b无法解开这个谜题,但它对这些灼热的巨型行星的新想法起到了重要的检验作用。 关于任务的更多信息 斯皮策在其有生之年收集的全部科学数据可通过斯皮策数据档案馆向公众提供,该档案馆位于加利福尼亚州帕萨迪纳加州理工学院IPAC红外科学档案馆。位于南加州的美国宇航局喷气推进实验室为华盛顿的美国宇航局科学任务理事会管理斯皮策太空望远镜任务。 公众可以通过斯皮策太空望远镜数据档案获得在其生命周期内收集的全部科学数据,这些数据档案存放在加州帕萨迪纳市加州理工学院IPAC的红外科学档案馆。位于南加州的NASA喷气推进实验室为位于华盛顿的NASA科学任务理事会管理斯皮策太空望远镜任务。 科学操作在IPAC的斯皮策科学中心进行。航天器运行基地设在科罗拉多州利特尔顿的洛克希德·马丁航天公司。 参考来源: https://www.nasa.gov/feature/jpl/nasa-s-spitzer-illuminates-exoplanets-in-astronomical-society-briefing