OSIRIS-REx样品返回演练

OSIRIS-REx样品返回演练

A recovery team member takes part in field rehearsals in preparation for the retrieval of the sample return capsule from NASA’s OSIRIS-REx mission in this image from Aug. 29, 2023. The sample of rocks and dust, which the OSIRIS-REx spacecraft collected from the asteroid Bennu in Oct. 2020, will return to Earth on Sept. 24, safely landing at the Department of Defense’s Utah Test and Training Range. The sample will give generations of scientists a window into the time when the Sun and planets were forming about 4.5 billion years ago. Get a preview of what the asteroid sample recovery will look like and join us on Sept. 24 at 10 a.m. EDT for live coverage. Image Credit: NASA/Keegan Barber 图为2023年8月29日,一名回收团队成员参加现场演练,为从NASA的OSIRIS-REx任务中回收样本回收舱做准备。OSIRIS-REx航天器于2020年10月从小行星贝努收集的岩石和尘埃样本将于9月24日返回地球,安全降落在国防部的犹他测试和训练靶场。该样本将为未来的科学家提供一个窗口,让他们了解大约45亿年前太阳和行星形成的时间。 预览小行星样本回收的情况,并于美国东部时间9月24日上午10点加入我们的现场报道。 影像来源:NASA/Keegan Barber

NASA的“小行星之眼”揭示了我们的近地天体邻居

NASA的“小行星之眼”揭示了我们的近地天体邻居

有了NASA的小行星之眼,你可以观察到所有已知的近地小行星和彗星围绕太阳运行。每天更新两次最新的跟踪数据,基于网络的应用程序将自动添加新的近地天体发现供您探索。 图片来源:NASA/JPL-Caltech 通过NASA新的3D实时网络应用程序,了解更多关于近地天体数量增长的信息。 通过新的 3D实时可视化工具,您现在可以通过单击或滑动来探索接近地球轨道附近的小行星和彗星以及访问这些物体的航天器。 NASA的“小行星之眼”将这些数据传送到任何具有互联网连接的智能手机、平板电脑或计算机上——无需下载。 每年都会发现数千颗小行星和几十颗彗星,其中一些被称为近地天体(NEO),沿着穿过太阳系内部的轨道运行。目前,这些天体的总数约为28,000个,它们的数量每天都在增加。NASA资助的天文学家会对这些天体进行仔细的跟踪,以防其中任何一个天体对我们的星球构成撞击威胁。 新的基于网络的应用程序描绘了每个已知近地天体的轨道,提供了这些物体的详细信息。使用屏幕底部的滑块,您可以快速向前和向后移动以查看它们的轨道运动。该可视化程序每天接收两次最新数据的更新,因此一旦发现新天体并计算出其轨道,就会将其添加到应用程序中。 完全交互式的“小行星之眼”,利用科学数据帮助可视化小行星和彗星围绕太阳运行的轨道。当你最喜欢的太空船在美丽的3D中探索这些迷人的近地天体时,请放大照片,与他们一起旅行。 影像来源:NASA/JPL-Caltech 许多近地天体任务的概况也可以探索。选择“事件”选项卡查看这些航天器及其小行星或彗星相遇的详细动画模型。例如,搜索NASA的OSIRIS-REx(起源、光谱解释、资源识别、安全-风化探测器的缩写)探测器,查看2020年10月20日的一触即走(TAG)样本收集事件的动画再现。或者看看NASA的双小行星重定向测试(DART)任务,这是NASA最近发射的第一个行星防御演示,甚至快进到2022年9月26日,届时它将撞击小行星Dimorphos,Didymos双小行星的小卫星系统。 “在讲述人类探索这些迷人物体的故事的同时,我们希望‘小行星之眼’尽可能地方便用户使用,”南加州NASA喷气推进实验室可视化技术应用和开发团队的技术制作人杰森·克雷格说,该团队开发了“小行星之眼”。“每个近地天体都可以在应用程序中找到,就像大多数访问过这些天体的航天器一样。” 关于近地天体背后迷人的科学以及跟踪潜在危险物体的重要性,也有很多细节。只要选择“学习”选项卡就可以了解小行星接近地球的详细信息,或是随着2029年4月13日阿波菲斯小行星戏剧性近距离接近飞行。 当你在这个主题上,选择“小行星观察”选项卡以查看接下来五个接近地球的小行星。“我们很想加入这个功能,因为近距离接触小行星通常会引起很多兴趣。”克雷格说,“新闻标题经常把这种近距离接触描述为‘危险的’接近,但用户可以用‘小行星之眼’来判断这些小行星的距离到底有多远。” “小行星之眼”的开发得到了NASA位于华盛顿总部的行星防御协调办公室和喷气推进实验室近地天体研究中心的支持。“小行星之眼”从喷气推进实验室的太阳系动力学数据库中收集数据,该数据库为太阳系中大多数已知的自然天体(包括近地天体)的轨道、特征和发现提供实时数据。有关小行星和彗星的新闻和更新,请在Twitter上关注@AsteroidWatch。 参考来源: https://www.nasa.gov/feature/jpl/nasa-s-eyes-on-asteroids-reveals-our-near-earth-object-neighborhood

NASA OSIRIS-REx的最后一次小行星观测运行情况

NASA OSIRIS-REx的最后一次小行星观测运行情况

美国宇航局的OSIRIS-REx任务即将发现它在去年秋天的样本收集活动中在小行星本努(Bennu)表面造成的混乱程度。4月7日,OSIRIS-REx航天器将与本努进行最后一次近距离接触,它将进行最后一次飞越,捕捉小行星表面的图像。在执行飞越时,航天器将从约2.3英里(3.7公里)的距离观察本努——这是自2020年10月20日 “即厨即走 “样品收集活动以来最接近的一次。 在本努的表面受到样品采集事件的严重干扰后,OSIRIS-REx团队决定增加这最后一次飞越。在着陆过程中,航天器的取样头沉入小行星表面1.6英尺(48.8厘米),并同时发射了加压的氮气。航天器的推进器也在后退燃烧过程中调动了大量的表面物质。由于本努的引力非常弱,航天器的这些不同的力量对采样点产生了巨大的影响——在这个过程中发射了许多该地区的岩石和大量的尘埃。这次对贝努的最后一次飞越将使飞行任务小组有机会了解航天器与本努表面的接触如何改变了采样点及其周围区域。 这次单次飞越将模仿2019年任务详细调查阶段进行的观测序列之一。OSIRIS-REx将对本努进行5.9小时的成像,这刚好超过小行星的一个完整的旋转周期。在这个时间段内,航天器的PolyCam成像仪将获得本努的北半球和南半球及其赤道区域的高分辨率图像。然后,该团队将把这些新图像与2019年期间获得的该小行星先前的高分辨率图像进行比较。 这幅艺术家的概念图展示了美国宇航局的奥OSIRIS-REx计划在4月7日最后一次飞越本努小行星时的飞行路线。 影像来源:NASA/Goddard/University of Arizona 该航天器的大多数其他科学仪器也将在飞越期间收集数据,包括MapCam成像仪、OSIRIS-REx热发射光谱仪(OTES)、OSIRIS-REx可见光和红外光谱仪(OVIRS)和OSIRIS-REx激光高度计(OLA)。使用这些仪器将使团队有机会评估航天器上每个科学仪器的当前状态,因为在样品收集活动期间,这些仪器都被灰尘覆盖。了解仪器的健康状况也是NASA评估样本送到地球后可能延长任务机会的一部分。 在OSIRIS-REx飞越本努之后,飞越的数据需要几天时间才能下传到地球。数据下传后,团队将检查图像,了解OSIRIS-REx是如何扰动小行星表面物质的。此时,该团队还将能够评估科学仪器的性能。 OSIRIS-REx将在小行星本努附近停留到5月10日,届时任务将进入返回巡航阶段,开始为期两年的返回地球之旅。当它接近地球时,航天器将抛出样品返回舱(SRC),其中包含从本努收集的岩石和尘埃。然后,SRC将穿越地球大气层,于2023年9月24日在降落伞下降落在犹他州测试和训练场。 一旦样品回收,返回舱将被运送到位于休斯顿的美国宇航局约翰逊航天中心的管理设施,在那里,样品将被取出,分发到世界各地的实验室,使科学家们能够研究太阳系和地球作为一个宜居星球的形成。 美国宇航局位于马里兰州格林贝尔特的戈达德太空飞行中心为OSIRIS-REx提供整体任务管理、系统工程以及安全和任务保障。亚利桑那大学图森分校的丹特-劳雷塔是首席研究员,亚利桑那大学还领导科学团队和任务的科学观测规划和数据处理。位于丹佛的洛克希德-马丁航天公司建造了该航天器并提供飞行操作。戈达德公司和KinetX航空航天公司负责OSIRIS-REx航天器的导航工作。OSIRIS-REx是美国航天局新前沿项目中的第三次任务,该方案由美国航天局设在阿拉巴马州亨茨维尔的马歇尔空间飞行中心为该局设在华盛顿的科学任务局管理。 参考来源: https://www.nasa.gov/feature/goddard/2021/nasa-osiris-rexs-final-asteroid-observation-run

贝努的样本泄露到太空中?冥王号已成功完成样

贝努的样本泄露到太空中?冥王号已成功完成样

这张动图含有3幅图像,由NASA的冥王号上的采样相机(SamCam)在2020年10月22日所拍摄,展示了冥王号的采样器中满是从小行星贝努表面收集来的岩石和尘埃。从这张动图中我们还能看到,有一部分小行星样品正缓慢地从采样器溢出到太空中。冥王号团队的分析表明,采样器的聚酯薄膜封口被楔出了一个开口,内部的少量样品正通过开口处的小间隙泄漏到太空中。聚酯薄膜封口(图中环状内侧左边的黑色凸起部位)的作用是将收集的样品材料封在采样器内部,而图中未密封的区域似乎是由某些采样时没能完全穿过封口的较大岩石引起的。根据已有的图像,研究团队怀疑采样器内部装有大量小行星样品,并且正在尽快采取行动对这些样品进行存储。 图片来源:NASA 10月20日星期二(本文中时间均为美国东部时间),美国航空航天局(NASA)的冥王号(Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer,太阳系起源、光谱解析、资源识别、安全保障、小行星风化层探索者,缩写OSIRIS-REx)触到了小行星贝努(Bennu),在此两天后,任务团队收到的图像表明,冥王号收集到的样品量远远超越了任务的要求:2盎司(60克)的小行星表面物质。 样品收集器的头部移动着通过几个不同的位置时,冥王号对其进行了拍照。在查看这些图像时,冥王号的任务团队注意到采样器头部似乎被小行星颗粒挤得满满的,而且其中一些颗粒好像正在缓慢地从样品收集器中溢出,所用的是即取即走式样品采集方法(Touch-And-Go Sample Acquisition Mechanism,TAGSAM)。研究团队怀疑,采样器的盖子(一种聚酯薄膜封口)被较大的岩石样品楔开了一个口子,样品材料的碎片正在通过开口处的小缝隙漏入太空。 “贝努出色的科学奥秘持续给我们带来惊喜,当然也抛来了一些意料之外的问题,”NASA位于华盛顿总部的科学副主任托马斯·齐布亨(Thomas Zurbuchen)说,“虽说我们可能需要尽快地采取行动来存储这些样品,但其实这也并不算是一个负面的问题。我们很高兴能看到收集上来了超乎想象的丰富样品,在这个历史性时刻之后的数十年间,它都将为科学研究带来灵感。” 在样品收集事件后,冥王号的研究团队比较了10月22日TAGSAM头部的图像与空采样器的头部,认为它已经收集到了足够多的样品,并且决定尽快安排对这些样品进行存储。 冥王号成功接触小行星贝努表面。 视频来源:NASA戈达德航天飞行中心 图像还显示,冥王号和TAGSAM仪器的任何移动都可能导致样品的进一步损失。为了尽可能保留采样器中剩余的样品材料,任务团队决定放弃原定于10月24日星期六进行的样品质量测量任务,并取消了原定于10月23日进行的制动点火,以最大程度地降低冥王号的运行加速度。 从10月24日开始,冥王号任务团队专注于将样品存放在样品返回舱(Sample Return Capsule,SRC)中,在此过程中,所有松散不受束缚的样品材料都将处于安稳的状态,随着探测器一同返回地球。 “我们正在努力保持自己当下所取得的成功,而我的工作则是尽可能多地让贝努的样品安全地返回,”图森市亚利桑那大学(University of Arizona)冥王号的首席研究员丹蒂·劳雷塔(Dante Lauretta)说道,“我很在意样品的质量损失,因此我强烈建议任务团队尽快存储这批宝贵的样品。”劳雷塔领导着冥王号任务团队,主管任务的科学观测计划和数据处理。 TAGSAM头部是在最佳的条件下执行的采样任务。最新的分析表明,在接触贝努小行星时,采样器的头部与贝努的表面紧紧地挨在了一起,同时点燃了氮气瓶对贝努表面的物质进行了搅动,它甚至还扎到了小行星表面物质几厘米深的地方。到目前为止的所有数据都表明,采样器的头部装有的风化层样品远远超过2盎司。 在这张图片中,NASA的冥王号正在存储它在2020年10月20日从贝努小行星上收集来的样品。冥王号将使用TAGSAM机器臂将TAGSAM采样头放置到样品返回舱中。 图片来源:NASA /亚利桑那大学 不同于冥王号在整个任务程序中自动运行的其他操作,样品存储是分阶段进行的,并且需要任务团队的监督和操作。任务团队将向冥王号发送初步命令,启动样品存储程序,一旦探测器完成了程序中的每个步骤,它就会将遥测和图像发送给地球上的任务团队,等待团队人员的确认再继续进行下一个步骤。 目前,冥王号与地球间的距离超过2.05亿英里(3.3亿公里),两者之间的单程信号传播需要18分半多一点的时间,因此样品存储程序的每一步都需要花上大约37分钟的通信传输时间。在整个过程中,任务团队不断评估TAGSAM机器臂的对准情况,确保将采样头最终能正确地放置到样品返回舱(Sample Return Capsule,SRC)中。新的成像程序也已经添加到了这一过程中,用于观察从采样器头部逸出的样品材料,确保没有样品颗粒阻碍存储过程。 在左图中,冥王号的TAGSAM机器臂将采样器头部移到了正确的捕获位置后,采样器头部悬停在样品返回舱上方;而在右图中,采样器头部被固定在样品返回舱中的捕获环上。这两张照片均由存储相机(StowCam)拍摄。 图片来源:NASA /戈达德/亚利桑那大学/洛克希德·马丁公司 10月28日星期三,任务团队向冥王号发送了命令,指示它关闭样品返回舱,这标志着任务中最具挑战性的其中一个阶段的结束。 “ 冥王号代表NASA和全世界所取得的成就,将我们的愿景提升到了我们作为团队和国家能共同实现的更高目标,”NASA局长吉姆·布里登斯坦(Jim Bridenstine)说道,“由产业界、学术界、国际合作伙伴以及才华横溢且多样化的NASA员工所组成的一支团队,利用他们在多领域的专业知识,让我们步入了正轨,大大增加了我们从太空中收集返回地球的样品。这些样品将改变我们对宇宙和自身的理解,这是NASA所有的努力与尝试的基础。” 任务团队从10月24日即开始为存储程序作准备,真正的执行则花费了团队整整两天连轴转的努力。存储相机(StowCam)拍下的存储程序图像显示,过程中有一些材料颗粒逸出到太空中,但是研究团队确信,大部分的材料仍保留在采样器头部之内。 “鉴于将采样器头部放置到捕获环上的过程颇为复杂,我们预计让它达到理想位置的操作将稍为费力一些,”NASA戈达德航天飞行中心(Goddard Space Flight Center)的冥王号项目主管里奇·伯恩斯(Rich Burns)说道,“幸运的是,在第一次尝试时就成功捕获了头部,这使我们能够迅速而有效地执行存储程序。” 到10月27日晚上,冥王号的TAGSAM机器臂已将采样器的头部置于样品返回舱中。第二天早上,冥王号团队通过执行“退出检查”,验证了采样器头部已完全固定在样品返回舱中,这一程序指示TAGSAM机器臂从舱中退出,收回到采样器头部上方并确保闩锁牢牢固定住了。 “我要感谢亚利桑那大学、NASA戈达德、洛克希德·马丁公司(Lockheed Martin)的冥王号团队及合作伙伴,还要尤为感谢NASA和喷气推进实验室(JPL)的空间通讯与导航(SCaN)和深空网络(Deep Space Network)的工作人员,他们不懈地努力为我们提供所需的带宽,让我们能够提前实现这一里程碑,当然我们仍有很长的路要走。”托马斯·齐布亨说道,“对于NASA而言,我们真正做到了首次,而我们因贝努所取得的成就,将使我们受益长达数十年。” 10月28日下午,撤离检查完成后,任务团队向冥王号发送了命令,指示它将TAGSAM机器臂上的链接头部与机器臂的两个机械部件断开。冥王号首先切断了载有氮气的管道,然后将采样器头部与TAGSAM机器臂本身分开。 当天晚上,冥王号完成了样品存储过程的最后一步:关闭样品返回舱。为了密封样品返回舱,冥王号关上了盖子,然后固定了两个内部闩锁。截至10月28日晚间,贝努小行星的样品已安全存储,并准备返回地球。 “我非常感谢我们的团队如此努力,尽快对样品进行了存储,”丹蒂·劳雷塔表示,“现在,我们可以期待在地球上接收样品并打开样品返回舱了。” 冥王号团队现在将着力准备下一阶段的任务,也就是地球回程巡航(Earth Return Cruise)。回程的出发窗口期将于2021年3月打开,目标是在2023年9月24日将样品返回舱交付地球。 冥王号任务的总体管理、系统工程以及安全保证由NASA的戈达德航天飞行中心(Goddard Space Flight Center)负责,中心位于马里兰州格林贝尔特。图森市的亚利桑那大学领导着该任务的科学研究团队以及科学观测计划和数据处理过程。位于丹佛的洛克希德·马丁空间系统公司(Lockheed Martin Space Systems Company)制造了探测器,同时正在执行飞行运作。冥王号的导航由戈达德航天飞行中心和KinetX 航空航天公司(KinetX Aerospace)负责。奥西里斯号是NASA新疆界计划(New Frontiers Program)的第三项任务,该计划由位于阿拉巴马州汉茨维尔的NASA马歇尔太空飞行中心(Marshall Space Flight Center)管理,由NASA华盛顿科学任务理事会(Science Mission Directorate)负责。 参考来源: [1] https://www.nasa.gov/press-release/nasa-s-osiris-rex-spacecraft-collects-significant-amount-of-asteroid [2] https://www.nasa.gov/press-release/nasa-s-osiris-rex-spacecraft-goes-for-early-stow-of-asteroid-sample [3] https://www.nasa.gov/press-release/nasa-s-osiris-rex-successfully-stows-sample-of-asteroid-bennu [4] https://www.youtube.com/watch?v=xj0O-fLSV7c

OSIRIS-REx小行星采集样品任务开始倒计时

OSIRIS-REx小行星采集样品任务开始倒计时

来源:NASA NASA的源光谱释义资源安全风化层辨认探测器(Origins Spectral Interpretation Resource Identification Security Regolith Explorer,OSIRIS-REx)任务即将到来的历史性时刻。短短几周内,机器人OSIRIS-REx航天器将下降到小行星贝努的巨石表面,着陆几秒钟,并收集小行星的岩石和尘土样本——这标志着首次采集小行星样本,这些样本将被送回地球进行研究。 10月20日,任务团将首次尝试“即触即走”(Touch-And-Go,TAG)样品采集任务。 这一系列的操作将使飞船降落到夜莺地点,该地位于贝努北半球直径52英尺(16 m)的岩石区域,飞船的机械取样臂将尝试在那里收集样本。夜莺地点之所以被选为这次任务的主要样本地点,是因为它拥有最多的不受阻碍的细粒物料,但该地区周围是大块的巨石。在采样过程中,这艘大型货车大小的航天器将尝试在一个只有几个停车位大小的区域着陆,而且距离这些巨石只有几步之遥。 10月20日,OSIRIS-REx飞船将进行第一次“即触即走”(TAG)样本采集任务。该航天器不仅将使用创新的导航技术导航到火星表面,而且还将收集自阿波罗任务以来最大的样本。 来源:NASA’s Goddard Space Flight Center 在为期4.5小时的样本采集过程中,飞船将进行三次不同的操作,以到达小行星表面。下降过程从OSIRIS-REx点燃推进器进行脱离轨道操作开始,执行轨道偏离操作,离开它的安全轨道,距离本努地表约2500英尺(770米)。在这个下行轨道上飞行了4个小时后,飞船在大约410英尺(125米)的高度执行“检查点”操作,推进器燃烧调整OSIRIS-REx的位置和速度,使其急剧下降到小行星表面。大约11分钟后,飞船在大约177英尺(54米)的高度进行了“匹配点”燃烧,减缓了下降速度,并瞄准了与小行星接触时的旋转相匹配的路径。然后飞船下降到小行星表面,在不到16秒的时间内着陆并发射了三个加压氮气瓶中的一个。气体搅动并提升了贝努表面的物质,这些物质随后被吸附在飞船的收集器头上。在这次短暂的接触之后,OSIRIS-REx发射推进器,使其远离贝努的表面,并导航到距离小行星安全距离的地方。 离开轨道后,航天器将进行一系列重新配置以准备采样。首先,OSIRIS-REx将其自动采样臂(即取即走样品采集机构(TAGSAM))从折叠位置延伸到样品采集位置。然后,飞船的两个太阳能电池板在飞船的身体上方移动成“ Y型”构型,从而在降落过程中将它们安全地定位在远离小行星表面的位置。这种配置还将航天器的重心直接放在TAGSAM收集器头上,这是航天器中唯一在样本收集过程中会接触贝努表面的部分。 由于TAG期间航天器和贝努距离地球大约2.07亿英里(3.34亿公里),因此信号在它们之间传播大约需要18.5分钟。这种时滞会阻止TAG事件期间从地面实时指挥飞行活动,因此该航天器被设计为自动执行整个样本采集序列。在活动开始之前,OSIRIS-REx团队将把所有命令上行到航天器,然后发送“ GO”命令开始。 由于飞船和和贝努在TAG期间距离地球约2.07亿英里(3.34亿公里),信号在它们之间传播大约需要18.5分钟。这个时间延迟阻止了在标签事件期间从地面对飞行活动的实时指挥,所以航天器被设计为自主地执行整个样本采集序列。在活动开始之前,欧西里斯-雷克斯团队将把所有的指令发送到飞船上,然后发送“出发”命令开始。 为了自主导航到夜莺地点,OSIRIS-REx使用了自然特征跟踪(NFT)导航系统。航天器在脱离轨道大约90分钟后开始收集导航图像。然后,使用已识别的表面特征,将这些实时图像与机载图像目录进行比较,以确保其朝着正确的方向行驶。当航天器接近地面时,OSIRIS-REx根据NFT对航天器位置和速度的估计来更新检查点和匹配点的操作。OSIRIS-REx在进行匹配点操作后降落到地面时,继续使用NFT估算来监测其位置和下降速度。如果航天器的轨迹变化超出预定范围,它将自动自主中止。 为了确保航天器降落在一个安全区域,避免该区域的许多岩石,导航系统配备了一个夜莺危险地图,它描绘了样本区域内可能对航天器造成潜在伤害的区域。如果航天器的NFT系统检测到它正在接近这些危险区域之一,航天器将在到达16英尺(5米)的高度时自动离开接近区域,这保证了航天器的安全,并允许在未来的日期进行后续的样本收集尝试。 当飞船执行采样序列中的每一个事件时,它将以非常缓慢的数据传输速度将遥测更新发送回OSIRIS-REx团队。该团队将在飞行过程中监测遥测技术,并能够确认TAG发生后不久,飞船已成功降落到本努的表面。在这次活动中收集到的图像和其他科学数据将在航天器远离小行星后向下传输,并将其较大的天线指向地球,以更高的通信速率进行传输。 OSIRIS-REx计划收集至少2盎司(60克)的贝努岩石材料,并将其带回地球——这是自阿波罗计划以来从太空返回的最大样本——该任务开发了两种方法来验证这些样本的收集。10月22日,OSIRIS-REx的SamCam相机将捕捉到TAGSAM头部的图像,以确定它是否含有贝努的表面物质。10月24日,该航天器还将进行旋转操作,以确定收集到的物质的质量。如果这些措施显示采集成功,将决定将样本放入样本返回舱(SRC)返回地球。如果没有从夜莺中收集到足够的样本,飞船上还会装载氮气进行另外两次尝试。在鱼鹰后备地点的TAG尝试将不早于2021年1月进行。 任务团队在过去的几个月中一直为样品采集活动做准备,同时将远程工作最大化作为其应对COVID-19的一部分。在TAG当天,有限的小组成员将采取适当的安全预防措施,从洛克希德·马丁航天公司的任务支持区监视航天器。团队的其他成员也将在现场的其他地点进行报道,同时遵守安全规程。 该航天器计划于2021年离开本努,并将于2023年9月24日将收集到的样本送到地球。 NASA位于马里兰州格林贝尔特的戈达德太空飞行中心为OSIRIS-REx提供总体任务管理、系统工程以及安全和任务保证。图森市亚利桑那大学的但丁·劳雷塔(Dante Lauretta)是首席研究员,亚利桑那大学还领导科学团队以及该团队的科学观测计划和数据处理。丹佛的洛克希德·马丁航天公司制造了该航天器并提供飞行操作。Goddard和KinetX Aerospace负责OSIRIS-REx航天器的导航。OSIRIS-REx是NASA新边界计划的第三项任务,该计划由位于阿拉巴马州亨茨维尔的NASA马歇尔航天飞行中心管理,隶属于该机构在华盛顿的科学任务理事会。 参见: https://www.nasa.gov/feature/goddard/2020/osiris-rex-begins-its-countdown-to-tag