NASA的好奇号拍摄到了火星景观变化的惊人景象

NASA的好奇号拍摄到了火星景观变化的惊人景象

2022年5月2日,即该任务的第3462个火星日,NASA的好奇号火星车使用其桅杆摄像机(简称Mastcam)拍摄到了这张硫酸盐沉积区域的照片。在中心附近看到的黑色巨石被认为是由古代溪流或池塘中沉积的沙子所形成。 影像来源:NASA/JPL-Caltech/MSSS 火星车记录下的惊人的岩层提供了火星远古时期干燥气候的证据。 在过去的一年里,NASA的好奇号火车一直在穿越一个过渡区,从一个富含粘土的区域过渡到一个富含盐分的硫酸盐矿物的区域。虽然科学团队瞄准了富含粘土的区域和富含硫酸盐的区域,以提供火星过去有水的证据,但事实证明,过渡区在科学上也很吸引人。事实上,这种转变可能提供了数十亿年前火星气候发生重大变化的记录,而科学家们才刚刚开始了解这一点。 粘土矿物形成于湖泊和溪流曾经在盖尔陨石坑中泛起涟漪,沉积物沉积在现在的夏普山脚下。夏普山高 3 英里(5 公里),自2014年以来,好奇号的山麓一直在上升。在过渡带的山上,好奇号的观测表明,溪流干涸成涓涓细流,在湖泊沉积物上方形成沙丘。 NASA的好奇号火星车拍摄到了这种分层的片状岩石,这些岩石被认为是在古老的河床或小池塘中形成。构成这幅拼接图的六幅图像是在 2022年6月2日,即任务的第3,492个火星日,使用好奇号的桅杆摄像机(简称Mastcam)拍摄。 影像来源:NASA/JPL-Caltech/MSSS “我们再也看不到夏普山多年来的湖底沉积物了。”南加州NASA喷气推进实验室的好奇号项目科学家阿什温·瓦萨瓦达说。“相相反,我们看到了许多气候干燥的证据,比如偶尔有溪流环绕的干燥沙丘。与之前可能存在数百万年的湖泊相比,这是一个巨大的变化。” 随着火星车在过渡区越爬越高,它探测到的粘土越来越少,硫酸盐越来越多。好奇号很快将在该区域钻取最后一个岩石样本,更详细地了解这些岩石矿物成分的变化。 2022年5月22日,即该任务的第3481个火星日,NASA的好奇号火星车在绰号为“Sierra Maigualida”的地点附近拍摄到了这幅360度全景图。这幅全景图由好奇号桅杆摄像机(简称Mastcam)拍摄的133幅单独的图像组成。 影像来源:NASA/JPL-Caltech/MSSS 独特的地质特征在这个区域也很突出。 该地区的山丘可能形成于于干燥的被风吹过的沙丘,随着时间的推移硬化成岩石。 散布在这些沙丘残骸中的是其他由水携带的沉积物,可能沉积在曾经在沙丘中编织的池塘或小溪流中。这些沉积物现在看起来像一堆抗侵蚀的片状沉积物,就像一个绰号为“船头”的沉积物。 让这个故事更丰富、更复杂的是,人们知道,地下水有多个时期随着时间的推移而涨落,给好奇号的科学家留下了一堆杂乱的拼图,让他们拼凑成一个准确的时间线。 NASA在火星上的航天器都受到这颗红色星球的风的影响,这种风可以产生微小的尘暴或全球尘暴。 影像来源:NASA/JPL-Caltech/ASU/MSSS/University of Arizona 十年如一日,不断壮大 好奇号将于8月5日在火星上庆祝它的第十个年头。虽然经过整整十年的探索,火星车显示出了它的年龄,但没有什么阻止它继续上升。 6月7日,好奇号在探测到火星车内一个仪表控制箱的温度读数高于预期后,进入安全模式。当航天器感知到问题,并自动关闭除最基本功能外的所有功能,以便工程师评估情况时,就会进入安全模式。 NASA的好奇号火星探测器在一个绰号为“Sierra Maigualida”的地区拍摄到了风沙堆积和冲刷形成的地层的证据。这张照片是在2022年5月19日,即此次任务的第3478个火星日,使用好奇号的桅杆照相机(简称Mastcam)拍摄。 影像来源:NASA/JPL-Caltech/MSSS 虽然好奇号在两天后退出了安全模式并恢复正常运行,但喷气推进实验室(JPL)的工程师仍在分析问题的确切原因。他们怀疑,安全模式是在温度传感器提供了不准确的测量数据后触发的,而且没有迹象表明它会对探测车的运行产生重大影响,因为备用温度传感器可以确保探测车体内的电子设备不会变得太热。 火星车的铝制车轮也出现磨损迹象。6月4日,工程团队命令好奇号为它的轮子拍摄新照片,每隔 3,281 英尺(1,000 米)就拍摄一次,以检查车轮的整体健康状况。 研究团队发现,左中间的轮子损坏了它的一个抓地齿,即好奇号轮子上的锯齿形履带。这个特殊的车轮已经有四个破损的抓地齿,所以现在它的19个抓地齿中有五个破损了。 此前受损的抓地齿最近在网上引起了关注,因为它们之间的一些金属“皮”在过去几个月内似乎已经从车轮上脱落,留下了一个缺口。 该团队决定将其车轮成像增加到每1640英尺(500米)一次,恢复到原来的节奏。牵引力控制算法已经减缓了车轮磨损,足以证明增加成像之间的距离是合理的。 “我们已经通过地面测试证明,如果必要,我们可以在轮辋上安全驾驶。”JPL好奇号项目经理梅根·林表示。“如果一个车轮损坏了大多数抓地齿,我们可以做一个有控制的断裂,把剩下的碎片弄掉。根据最近的趋势,我们似乎不太可能需要采取这样的行动。车轮支撑得很好,为我们继续爬坡提供了所需的牵引力。” 有关好奇号的更多信息,请访问: mars.nasa.gov/msl/home/ 和 nasa.gov/curiosity 参考来源: https://www.nasa.gov/feature/jpl/nasa-s-curiosity-captures-stunning-views-of-a-changing-mars-landscape

好奇号火星车测量火星上有趣的碳特征

好奇号火星车测量火星上有趣的碳特征

NASA的好奇号火星车在2021年3月19日日落后拍摄到这些云,这是火星探测器任务的第三千零六十三火星日。该图像由21个单独的图像拼接在一起,并进行颜色校正,以使场景看起来就像人眼看到的一样。 影像来源:NASA/Caltech-JPL/MSSS 在分析了NASA好奇号火星车从火星表面采集的粉状岩石样本后,科学家今天宣布,其中几个样本富含一种碳,这种碳在地球上与生物过程有关。 尽管这一发现很有趣,但它并不一定指向火星上的古代生命,因为科学家们尚未发现确凿的支持证据,证明火星上存在古代或现代生物,例如古代细菌产生的沉积岩层,或复杂有机物的多样性生命形成的分子。 “我们在火星上发现的东西非常有趣,但我们真的需要更多的证据来证明我们已经发现了生命。”保罗·马哈菲说。他曾担任好奇号火星样品分析(SAM)化学实验室的首席研究员,直到2021年12月从马里兰州格林贝尔特的NASA戈达德太空飞行中心退休。“因此,我们正在研究如果不是生命的话,还有什么可能导致我们看到的碳特征。” 在他们将于1月18日在《美国国家科学院院刊》上发表的研究报告中,好奇号科学家对他们检测到的不寻常的碳信号提供了几种解释。他们的假设部分是基于地球上的碳信号,但科学家警告称,这两个行星是如此不同,他们无法根据地球上的例子得出明确的结论。 “最困难的事情是放开地球,放开我们的偏见,真正尝试了解火星上的化学、物理和环境过程的基本原理。”参与碳研究的戈达德天体生物学家詹妮弗·艾格布罗德说。此前,艾格布罗德带领好奇号科学家组成的一个国际团队在火星表面探测到无数的有机分子,这些分子中含有碳。 “我们需要打开我们的思想,跳出固有的思维模式,”艾格布罗德说,“这就是这篇论文所做的。” 好奇号科学家在他们的论文中提出的生物学解释受到地球生命的启发。它涉及地表中的古老细菌,当它们将甲烷释放到大气中时,它们会产生独特的碳特征,而紫外线会将这种气体转化为更大、更复杂的分子。这些新分子会像雨点一样降落到地表,现在可以在火星岩石中以其独特的碳特征保存下来。 好奇号科学家在他们的论文中提出的生物学解释受到了地球生命的启发。它涉及到地表中的古老细菌,当它们将甲烷释放到大气中,紫外线将甲烷转化为更大、更复杂的分子时,它们可能会产生一种独特的碳特征。这些新分子如雨点般降落到火星表面,现在我们可以找到保存在火星岩石中独特的碳标记。 另外两个假设提供了非生物学的解释。一种观点认为,碳特征可能是由紫外线与火星大气中的二氧化碳气体相互作用产生的,产生了新的含碳分子,这些分子会沉降到火星表面。另一种推测认为,这些碳可能是数亿年前太阳系穿过一个富含检测到的碳类型的巨大分子云时发生的罕见事件留下的。 为了分析火星表面的碳,豪斯的团队使用了SAM实验室内的可调谐激光光谱仪(TLS)仪器。SSAM将来自火星盖尔陨石坑不同地质位置的24个样本加热到约1500华氏度(850摄氏度),以释放其中的气体。然后TLS测量了一些在加热过程中被释放的还原碳的同位素。同位素是由于中子数量不同而具有不同质量元素的原子,它们有助于理解行星的化学和生物演化。 碳元素尤其重要,因为地球上所有生命中都有碳元素;它在空气、水和地面之间不断地循环流动,同位素测量方法使我们很好地理解了这一点。 例如,与较重的碳13原子相比,地球上的生物使用较小、较轻的碳12原子来代谢食物或进行光合作用。因此,远古岩石中的碳12明显多于碳13,此外还有其他证据表明,科学家们正在研究与生命相关的化学特征。观察这两种碳同位素的比例有助于地球科学家了解他们所观察的生命类型以及它们所生活的环境。 在火星上,好奇号的研究人员发现,与科学家在火星大气和陨石中测量的数据相比,他们的样本中近一半含有惊人的大量碳12。研究人员报告说,这些样本来自盖尔陨石坑的五个不同地点,这可能是因为所有地点都有保存完好的古代表面。 “在地球上,会产生我们在火星上检测到的碳信号的过程是生物过程,”豪斯说。 “我们必须了解相同的解释是否适用于火星,或者是否还有其他解释,因为火星非常不同。” 火星之所以独特,是因为它的碳同位素组合可能与45亿年前的地球不同。火星更小、更冷、重力更弱,大气中的气体也不同。此外,火星上的碳可以在没有任何生命参与的情况下循环。 华盛顿卡内基科学研究所的好奇科学家安德鲁·斯蒂尔说:“地球上有很大一部分碳循环涉及生命,因为生命,地球上有很大一部分碳循环我们无法理解,因为我们看到的每一个地方都有生命。” 这幅马赛克拼图是由NASA的好奇号火星车上的桅杆相机在任务的第2729个火星日拍摄的图像制成的。它显示了盖尔陨石坑中斯汀森砂岩形成的地貌。好奇号在这个一般的位置钻了一个爱丁堡钻孔,从中提取的样本富含碳12。 影像来源:NASA/Caltech-JPL/MSSS 斯蒂尔指出,对于火星上碳循环的理解,以及如何解释同位素比率和导致这些比率的非生物活动,科学家们还处于早期阶段。好奇号于2012年抵达火星,是第一个携带工具研究火星表面碳同位素的探测器。其他的任务已经收集了大气中同位素特征的信息,科学家已经测量了在地球上收集到的火星陨石的比例。 “定义火星上的碳循环绝对是试图了解生命如何适应该循环的关键,”斯蒂尔说。“我们在地球上确实成功地做到了这一点,但我们才刚刚开始为火星定义碳循环。” 好奇号科学家将继续测量碳同位素,看看当火星车访问其他疑似保存完好的古代表面时,是否会得到类似的特征。为了进一步测试有关产甲烷微生物的生物学假设,好奇号团队希望分析从火星表面释放出来的甲烷烟羽中的碳含量。火星车在 2019 年意外地遇到了这样的羽流,但无法预测这种情况是否会再次发生。此外,研究人员指出,这项研究为NASA毅力号火星车背后的团队提供了指导,帮助他们收集最佳样本类型,以确认碳特征,并确定它是否来自生命。毅力号正在从火星表面收集样本,以备将来返回地球。 好奇号的任务由NASA位于南加州的喷气推进实验室(JPL)领导; JPL 由加州理工学院管理。 参考来源: https://www.nasa.gov/feature/goddard/2022/nasa-s-curiosity-rover-measures-intriguing-carbon-signature-on-mars

毅力号团队评估首次火星采样

毅力号团队评估首次火星采样

2021年8月6日,NASA毅力号火星车上的一台危险相机拍摄的这张图片,显示了被火星车科学团队称为“铺路石”上钻出的洞,为这次任务首次尝试从火星上收集样本做准备。 影像来源:NASA/JPL-Caltech NASA的毅力号火星车首次尝试在火星上收集岩石样本并将其密封在一个样品管中,随后向地球发送了数据,表明在最初的取样活动中没有收集到岩石。 火星车携带了43个钛合金样品管,正在探索杰泽罗火山口,它将在那里收集岩石和风化层(破碎的岩石和尘埃)的样品,以便将来在地球上进行分析。 “虽然这不是我们希望的‘一杆进洞’,但开辟新领域总是有风险的,”位于华盛顿的NASA科学任务局副局长托马斯·泽布亨(Thomas Zurbuchen)说。“我相信我们有正确的团队在做这件事,我们将坚持不懈地寻找解决方案,以确保未来的成功。” 毅力号的采样和缓存系统使用了一个空心取心钻头和一个在其7英尺(2米)长的机械臂末端的冲击钻来提取样品。火星车发回的遥测数据表明,在第一次取心尝试中,钻头和钻头按照计划进行了工作,取芯后的样管也按照计划进行了处理。 “采样过程从头到尾都是自主的,”位于南加州的NASA喷气推进实验室的毅力号地面任务经理杰西卡·塞缪尔斯(Jessica Samuels)说。“将探针放入样品管后的步骤之一是测量样本的体积。探针没有遇到预期的阻力,如果样本在样品管内就会遇到阻力。” 毅力号的任务是组建一个响应小组来分析数据。早期的一个步骤将是使用WATSON(操作和电子工程广角地形传感器)成像仪——位于机械臂的末端——来拍摄钻孔的近距离照片。一旦团队对发生的事情有了更好的了解,就能够确定何时安排下一次样本收集尝试。 “最初的想法是,,空管更有可能是岩心目标没有像我们预期的那样做出反应,而不是取样和缓存系统的硬件问题。”JPL的毅力号项目经理詹妮弗·特罗斯珀(Jennifer Trosper说)。“在接下来的几天里,团队将花更多的时间来分析我们拥有的数据,还将获得一些额外的诊断数据来支持了解空管的根本原因。” 此前,NASA在火星上的任务中也遇到了令人惊讶的岩石和风化层性质的样品收集和其他活动。2008年,凤凰号任务对粘性土壤进行了取样,这些土壤难以进入机载科学仪器,在取得成功之前进行了多次尝试。好奇号在岩石上钻孔,结果发现岩石比预期的更硬、更脆。最近,洞察号着陆器上被称为鼹鼠的热探针未能按计划穿透火星表面。 “从一开始我就参与了每一次火星探测器的任务,而这颗行星总是教会我们我们不知道的事情,”特罗斯珀说。 “我发现的一件事是,在复杂的第一次活动中出现并发症并不罕见。” 第一次科学活动 毅力号目前正在探索两个地质单元,其中包含杰泽罗火山口最深、最古老的裸露基岩层和其他有趣的地质特征。第一个单元被称为 “火山口底部断裂粗糙”,是杰泽罗火山口的底部。相邻的单元被命名为 “Séítah”(在纳瓦霍语中意为 在沙子中),也有火星基岩,也是山脊、层状岩石和沙丘的所在地。 最近,毅力号科学团队开始使用来自机智号火星直升机的彩色图像来帮助侦察潜在的科学兴趣区域,并寻找潜在的危险。8月4日星期三,机智号完成了它的第11次飞行,在其当前位置向下飞行了约1250英尺(380米),以便它能够为项目提供Séítah南部地区的空中侦查。 当毅力号返回其着陆点时,该探测器的初步科学探测将完成,其时间跨度为数百个火星日。届时,毅力号将行驶1.6至3.1英里(2.5至5公里),可能已经装满了八个样品管。 接下来,毅力号将向北行驶,然后向西行驶,前往它的第二次科学活动的地点。杰泽罗火山口的三角洲地区。三角洲是杰泽罗火山口内一条古老河流和一个湖泊汇合处的扇形遗迹。该地区可能含有特别丰富的碳酸盐矿物。在地球上,这种矿物可以保存古代微观生命的化石痕迹,并与生物过程有关。 关于任务的更多信息 毅力号在火星上的任务的一个关键目标是天体生物学,包括寻找古代微生物生命的迹象。火星车将描绘这颗行星的地质和过去的气候特征,为人类探索这颗红色星球铺平道路,并成为收集和保存火星岩石和风化层的第一个任务。 随后的NASA任务将与ESA(欧洲航天局)合作,向火星发送航天器,从火星表面收集这些密封样品,并将其送回地球进行深入分析。 火星2020毅力号任务是NASA从月球到火星探索方法的一部分,其中包括对月球的阿耳忒弥斯任务,这将有助于为人类探索红色星球做准备。 喷气推进实验室(JPL)由位于加州帕萨迪纳的加州理工学院为NASA管理,JPL建造并管理毅力号探测器的运作。 关于毅力号的更多信息,请访问: https://mars.nasa.gov/mars2020/ 和 https://nasa.gov/perseverance 参考来源: https://www.nasa.gov/press-release/nasa-s-perseverance-team-assessing-first-mars-sampling-attempt

一开始你看到了,然后你就看不见了:科学家更接近解释火星甲烷之谜

一开始你看到了,然后你就看不见了:科学家更接近解释火星甲烷之谜

在火星探测到甲烷的报告吸引了科学家和非科学家的目光。在地球上,微生物产生大量甲烷,帮助大多数牲畜消化植物。这个消化过程以牲畜呼气或向空气中打嗝结束。 虽然火星上没有牛、绵羊或山羊,但在那里发现甲烷令人兴奋,因为它可能意味着微生物曾经或正在红色星球上生活。然而,甲烷可能与微生物或任何其他生物无关;涉及岩石、水和热相互作用的地质过程也可以产生甲烷。 在确定火星上甲烷的来源之前,科学家必须解决一个一直困扰着他们的问题:为什么有些仪器能探测到甲烷,而有些却不能?例如,NASA的好奇号火星车多次在盖尔火山口的正上方探测到甲烷。但是ESA(欧洲航天局)的ExoMars微量气体轨道飞行器没有在火星大气中检测到任何甲烷。 “当微量气体轨道飞行器于 2016 年加入时,我完全期待轨道飞行器团队报告火星上到处都有少量甲烷,”样品中可调谐激光光谱仪 (TLS) 仪器的负责人克里斯韦伯斯特说好奇号火星车上火星 (SAM) 化学实验室的分析。 “微量气体轨道飞行器在2016年上岗时,我预计轨道器团队报告说火星上到处都有少量的甲烷,”好奇号探测器上的火星样品分析(SAM)化学实验室的可调谐激光光谱仪(TLS)负责人克里斯·韦伯斯特(Chris Webster)说。 TLS在盖尔陨石坑测量到的甲烷平均体积小于十亿分之一。这相当于在一个奥运会大小的游泳池里稀释一小撮盐。这些测量中不时出现体积高达十亿分之二十的令人困惑的峰值。 “但是当欧洲团队宣布没有发现甲烷时,我绝对感到震惊,”在位于南加州的NASA喷气推进实验室工作的韦伯斯特说。 欧洲轨道飞行器被设计为测量整个行星上甲烷和其他气体的黄金标准。与此同时,好奇号的TLS非常精确,它将被用于国际空间站的火灾预警探测,并用于跟踪太空服中的氧气水平。它还被授权用于发电厂、石油管道和战斗机,飞行员可以监测他们面罩中的氧气和二氧化碳水平。 尽管如此,韦伯斯特和SAM团队还是被欧洲轨道飞行器的发现震惊了,并立即着手仔细检查火星上的TLS测量。 NASA好奇号火星车于2018年6月15日拍下了这张自拍照,这是好奇号火星车执行任务的第 2082 个火星日。沙尘暴降低了火星车所在位置的阳光和能见度,火星车位于维拉鲁宾山脊以北的德卢斯钻探点。在火星车左侧的大巨石上可以看到一个小钻孔。自拍照是使用好奇号火星手透镜成像仪拍摄的图像创建。 图片来源:NASA/JPL-Caltech/MSSS 一些专家认为是探测器本身释放了气体。“所以我们观察了与探测器指向、地面、岩石破碎、车轮退化等因素的相关性。”韦伯斯特说。“为了确保这些测量结果是正确的,团队在研究每一个小细节方面所付出的努力是不言而喻的,而他们确实如此。” 韦伯斯特和他的团队于6月29日在《天文学与天体物理学》杂志上报告了他们的结果。 NASA好奇号火星车在2019年5月7日,即任务的第2400个火星日捕捉到了这些漂浮的云层。好奇号使用其黑白导航相机拍摄照片。图中可能是距离火星表面约 19 英里(31 公里)的水冰云。 图片来源:NASA/JPL-Caltech 另一方面,微量气体轨道飞行器需要阳光来精确测量地表以上3英里(5公里)处的甲烷。“任何行星表面附近的大气层在白天都会经历一个周期,”摩尔斯(Moores)说。来自太阳的热量搅动着大气,暖空气上升,冷空气下降。因此,夜间被限制在地表附近的甲烷在白天混入更广泛的大气中,将其稀释到无法检测的水平。“所以我意识到没有任何仪器,尤其是在轨道上运行的,能看到任何东西,”摩尔斯说。 好奇号团队立即决定通过收集第一次高精度的日间测量数据来测试摩尔斯的预测。TLS在火星的一个白天连续测量甲烷,包括一个夜间测量和两个日间测量。在每次实验中,SAM吸入火星空气两个小时,不断地去除占火星大气95%的二氧化碳。这就留下了一份浓缩的甲烷样本,TLS可以通过多次使用红外激光束来轻松测量,这种激光束被调谐到可以使用被甲烷吸收的精确波长。 “约翰预测,甲烷在白天应该有效地下降到零,而我们的两次白天测量证实了这一点,”SAM的首席研究员保罗·马哈菲(Paul Mahaffy)说,他在马里兰州格林贝尔特的NASA戈达德太空飞行中心工作。TLS的夜间测量结果与团队已经确定的平均值非常吻合。马哈菲说:“所以这是解决这个巨大差异的一种方式。” 虽然这项研究表明,盖尔陨石坑表面的甲烷浓度一整天都在上升和下降,但科学家还没有解决火星上的全球甲烷谜题。甲烷是一种稳定的分子,预计在被太阳辐射分解之前会在火星上持续大约 300 年。如果甲烷不断地从所有类似的陨石坑中渗出,科学家们认为这可能是由于盖尔号似乎在地质上不是独一无二的,那么大气中应该积累了足够的甲烷,以便微量气体轨道器探测到。科学家们怀疑在不到300年的时间里有什么东西在破坏甲烷。 目前正在进行实验,以测试火星大气中的尘埃引起的极低水平放电是否会破坏甲烷,或者火星表面丰富的氧气是否会在甲烷到达上层大气之前迅速破坏甲烷。 韦伯斯特说:“我们需要确定是否存在一种比正常情况更快的破坏机制,以完全协调来自火星车和轨道飞行器的数据集。” 参考来源: https://www.nasa.gov/feature/goddard/2021/first-you-see-it-then-you-don-t-scientists-closer-to-explaining-mars-methane-mystery

NASA科学家发现火星上可能存在有机盐

NASA科学家发现火星上可能存在有机盐

这副图由美国国家航空航天局(NASA)好奇号(Curiosity)探测器上的桅杆照相机(Mastcam)拍摄于2014年2月9日,也即好奇号任务的第538个火星日。好奇号探测器驶过该沙丘,沙丘位于Dingo Gap 山口。 来源:NASA/加州理工-喷气推进实验室(JPL-Caltech)/马林空间科学系统(MSSS) NASA的一个团队发现火星上可能存在有机盐。这些盐类是有机化合物的化学残留物,就像古代陶器的碎片一样,NASA好奇号探测器之前所探测到的盐类也是如此。火星上的有机化合物和盐类可能是由地质过程形成的,也可能是古代微生物生命的残留物。 在火星上直接探测到有机盐的存在,不仅为火星上曾经存在有机物质的观点增添了更多证据,也对火星目前的可居住性提供支持。因为在地球上,一些生物体可以利用草酸盐和醋酸盐等有机盐类来获取能量。 该研究由来自NASA戈达德太空飞行中心的有机地球化学家詹姆斯·M·T·路易斯(James M. T. Lewis)牵头,研究成果于3月30日发表在《地球物理研究期刊》(Journal of Geophysical Research)上。他表示:“如果我们在火星上的任何地方确定存在有机盐集中分布,我们会想对这些区域进行进一步调查,最好是在地表以下更深处进行钻探,那里的有机物质可以被保存得更好。” 路易斯的实验和对火星样本分析仪数据的分析,都间接表明了火星上有机盐的存在。火星样本分析仪又名“化学和矿物学分析仪”,简称SAM,是好奇号探测器内部的一个便携式化学实验室。但是,使用诸如火星样本分析仪之类的仪器在火星上直接识别有机盐是很困难的,该仪器通过加热火星土壤和岩石以释放出揭示这些样品成分的气体。然而挑战在于,加热有机盐只产生简单的气体,而火星土壤中的其他成分也可能会释放这些气体。 如果你有来自另一个星球的一个样本,而你想知道它是否含有某种特定的分子,甚至可能是一个能够揭示该星球是否能维持生命的分子,你将会怎么做?当科学家们面临这种情况时,他们使用了一个惊人的工具:质谱仪。质谱仪可以使科学家得以非常仔细地对样品进行观测,并确定其中含有的物质。 如果你有一个来自另一个星球的样本,而你想找出它是否含有某种分子……甚至可能是一个能揭示该星球是否能维持生命的分子,你会怎么做?当科学家们面对这样的情况时,他们使用了一个惊人的工具:质谱仪。它可以分离材料,使科学家能够非常仔细地观察一个样本,并看到里面有什么。 影像来源:美国宇航局/戈达德太空飞行中心 然而,路易斯和他的团队提出,好奇号探测器上使用不同技术的另外一个仪器,即化学与矿物学分析仪(CheMin)可以探测到某些有机盐类(如果含量足够丰富)。但到目前为止,化学与矿物学分析仪还没有检测到有机盐类。 寻找有机分子或有机盐的残余物,对NASA寻找其他星球上的生命而言至关重要。但在火星表面,这是一项具有挑战性的任务,因为数十亿年的辐射已经将有机物质抹去或分解。就像考古学家挖掘陶器碎片一样,好奇号探测器收集火星土壤和岩石,其中可能含有微小的有机化合物块,然后由火星样本分析仪和其他仪器鉴定其化学结构。 路易斯和他的团队以及其他科学家们试图通过好奇号探测器传回地球的数据,将这些破碎的有机物碎片拼凑起来。他们的目标是推断出这些碎片曾经可能属于什么类型的大分子,以及这些分子可能揭示出怎样的火星古代环境和潜在的生物学。 路易斯表示:“我们正试图解开数十亿年的有机化学过程,在这一有机记录中,可能包含终极大赏:即表明火星上曾经存在生命的证据。” 虽然一些专家几十年来一直预测火星上保存着古老的有机化合物,但由于好奇号上的火星样本分析仪实验,这一预测才被予以证实。例如,由NASA戈达德太空飞行中心的天体生物学家珍妮弗·艾根布罗德(Jennifer L. Eigenbrode)牵头的好奇号任务科学家国际团队于2018年发布的一份报告中表明检测到了无数含碳分子。正如我们所知,碳是生命的基本元素。 研究科学家詹妮弗·埃杰布洛德博士讨论了火星上发现的古代有机分子。 影像来源:美国宇航局/戈达德太空飞行中心/丹·加拉格尔 艾根布罗德与路易斯合作进行了这项新的研究,她表示:“我们在火星表面发现的30亿年历史的岩石中保存着有机物,这是一个非常有希望的迹象,这表明我们也许能够从火星地表之下保存得更好的样本中获取更多信息。” 几十年前,科学家们预测火星上的有机化合物可能分解成盐。他们认为,这些盐类比大而复杂的分子(例如与生物功能相关的分子)更有可能长期存留在火星表面。 如果火星样本中存在有机盐,路易斯和他的团队想知道在火星样本分析仪的加热炉中加热会如何影响其释放气体的类型。火星样本分析仪的工作原理是将样品加热至超过1800华氏度(1000摄氏度)。热量使分子分解,释放出一些气体。不同的分子在特定的温度下释放出不同的气体。因此,通过观测在哪个温度下释放出哪种气体,科学家们可以推断出样品是由什么成分构成的。 路易斯表示:“当加热火星样本时,矿物质和有机物之间会产生许多相互作用,这可能会使我们的实验更难得出结论,所以我们正在做的工作是试图将这些相互作用进行拆解,以便在科学家们在火星上进行分析时能够利用这些信息。” 路易斯对一系列与惰性硅石粉混合的有机盐进行了分析,以复制火星岩石。他还研究了在硅石混合物中加入高氯酸盐的影响。高氯酸盐是一种含有氯和氧的盐类,在火星上很常见。科学家们长期以来一直担心它们会对寻找有机物质迹象的实验造成干扰。 史上第一张火星照片来自NASA的维京1号(Viking 1)火星探测器,摄于1976年7月20日。 来源:NASA/喷气推进实验室(JPL) 欲了解更多信息,请戳阅:https://www.jpl.nasa.gov/images/first-photograph-taken-on-mars-surface 事实上,研究人员发现高氯酸盐的确对他们的实验产生了干扰,并且准确地指出了是如何干扰的。但他们也发现,与没有高氯酸盐的情况相比,他们从含有高氯酸盐的样本中收集到的结果与火星样本分析仪的数据更加吻合,这支持了火星上存在有机盐的可能性。 此外,路易斯和他的团队的报告表明,有机盐可以被好奇号探测器上的化学与矿物学分析仪检测到。为确定样品的成分,化学与矿物学分析仪向其发射X射线,并测量X射线向检测器衍射的角度。 随着好奇号探测器进入盖尔陨石坑夏普山的新区域,其火星样本分析仪和化学与矿物学分析仪团队将继续搜寻有机盐类的信号。 不久之后,科学家们也将有机会研究火星地表以下保存得更好的土壤。欧洲航天局(ESA)即将推出ExoMars火星漫游车,其装备可以钻探至火星地表之下6.5英尺(约2米)。它将携戈达德仪器,分析火星地表下更深层的化学成分。NASA的毅力号”(Perseverance)火星探测器上没有可以探测有机盐的仪器,但它正在收集样本,以便将来送回地球通过精密的实验室机器来寻找有机化合物。 参考来源: https://www.nasa.gov/feature/goddard/2021/salts-could-be-important-piece-of-martian-organic-puzzle-nasa-scientists-find-0

庆祝好奇号在这颗红色星球上8周年

庆祝好奇号在这颗红色星球上8周年

NASA’s Curiosity Mars Rover touched down eight years ago, on Aug. 5, 2012, and will soon be joined by another rover, Perseverance, which launched on July 30, 2020. Curiosity has seen a lot since it first set its wheels inside the 96-mile-wide (154-kilometer-wide) basin of Gale Crater. Its mission: to study whether Mars had the water, chemical building blocks, and energy sources that may have supported microbial life billions of years ago. Since touchdown, the rover journeyed more than 14 miles (23 kilometers), drilling 26 rock samples and scooping six soil samples along the way as it revealed that ancient Mars was indeed suitable for life. Studying the textures and compositions of ancient rock strata is helping scientists piece together how the Martian climate changed…

红色行星的霍尔顿陨石坑

红色行星的霍尔顿陨石坑

Much of Mars is covered by sand and dust but in some places stacks of sedimentary layers are visible. In this image, exquisite layering is revealed emerging from the sand in southern Holden Crater. Sequences like these offer a window into Mars’ complicated geologic history. Holden Crater was once a candidate landing area for the Curiosity, Mars Science Laboratory, and is still an intriguing choice today. Image Credit: NASA/JPL-Caltech/University of Arizona 火星的大部分地区被沙尘覆盖,但在一些地方可以看到成堆的沉积层。在这张图片中,霍尔顿陨石坑南部的沙子上呈现出精致的分层。像这样的科学为了解火星复杂的地质历史提供了一个窗口。 霍尔顿环形山曾经是“好奇号”火星科学实验室的候选着陆区域,今天仍然是一个有趣的选择。 影像来源:NASA/JPL-Caltech/University of Arizona

NASA的好奇号火星探测器拍摄了迄今为止分辨率最高的全景图

NASA的好奇号火星探测器拍摄了迄今为止分辨率最高的全景图

NASA的好奇号探测器在2019年11月24日至12月1日之间拍摄到了火星表面的最高分辨率全景照片。 来源:NASA/JPL-Caltech/MSSS 完整图片及说明 NASA的好奇号火星探测器拍摄到迄今为止火星表面的最高分辨率全景照片。这张由2019年感恩节假期拍摄的1000多张图片组成,在随后的几个月里经过精心的组合,合成出了18亿像素的火星景观。探测器的桅杆照相机(或称为Mastcam)使用远摄镜头来拍摄全景;与此同时,它还通过它的中角镜头拍摄了一个低分辨率,近6.5亿像素的全景图,包括探测器的甲板和机械臂。 除了一幅近18亿像素的全景图没有展示月球车外,NASA的好奇号还拍摄了一幅含探测器本身的6.5亿像素的全景图。 来源:NASA/JPL-Caltech/MSSS 完整图片及说明 两幅全景画都展示了“格伦托里登”(Glen Torridon),它位于“好奇号”正在探索的夏普山(Mount Sharp)一侧。这些照片拍摄于11月24日至12月1日之间,当时任务团队正在感恩节期间外出。在等待团队返回并提供下一个指令的过程中,探测器静静地坐着,几乎没有什么任务要做,它有一个难得的机会,连续几天从同一个有利位置拍摄周围的环境。(仔细看:观看者可以使用特殊工具放大此全景图。) 在这四天里,“好奇号”花了超过6个半小时才拍下了这些照片。Mastcam的操作员编写了复杂的任务列表,其中包括对准探测车的桅杆,并确保图像清晰。为了保证光照的一致性,他们将成像时间限制在当地火星时间的中午至下午2点之间。 NASA好奇号项目的科学家阿什温·瓦萨瓦达带领大家参观好奇号在火星表面的景观。 来源:NASA/JPL-Caltech/MSSS “当我们团队中的许多人在家里享用火鸡大餐时,好奇号却为我们带来了一场视觉盛宴。”负责好奇号漫游车任务的NASA喷气推进实验室的好奇号项目科学家阿什温·瓦萨瓦达说,“这是我们在执行任务期间第一次将操作专注于立体360度全景。” 2013年,好奇号用两款Mastcam相机拍摄了13亿像素的全景照片;它的黑白导航摄像机(Navcams)提供了探测器本身的图像。图像专家通过创建由单个图片组成的马赛克,并融合它们的边缘来创建无缝的外观,从而精心制作火星全景图。 位于圣地亚哥的马林空间科学系统公司负责建造和操作好奇号的桅杆摄像机。喷气推进实验室是加州理工学院在帕萨迪纳的一个分部,负责管理NASA在华盛顿的科学任务局的项目,并制造了导航摄像机和探测器。 NASA好奇号火星探测器18亿像素的全景图(360视角) 参考: https://www.nasa.gov/feature/jpl/nasas-curiosity-mars-rover-snaps-its-highest-resolution-panorama-yet

好奇号火星车着陆7年后,仍然在持续探索

好奇号火星车着陆7年后,仍然在持续探索

Seven years. 13 miles. 22 samples. Our Curiosity rover has come a long way since touching down on Mars seven years ago. It has traveled a total of 13 miles (21 kilometers) and ascended 1,207 feet (368 meters) to its current location. Along the way, Curiosity discovered Mars had the conditions to support microbial life in the ancient past. And the rover is far from done, having just drilled its 22nd sample from the Martian surface. This image is a part of a 360-degree panorama Curiosity captured of a location on Mars called “Teal Ridge” on June 18, 2019. Image Credit: NASA/JPL-Caltech/MSS 七年。13英里。22个样本。 自从七年前登陆火星以来,我们的好奇号漫游者已经走了很长一段路。它总共飞行了13英里(21公里),并上升了1207英尺(368米)到目前的位置。在探索的过程中,“好奇号”发现火星在远古时代就具备了支持微生物生存的条件。火星车还远没有完成,它刚刚从火星表面钻出了第22个样本。 2019年6月18日,“好奇号”在火星上拍摄了一个名为“蒂尔山脊”的360度全景图。 图片来源:NASA/JPL-Caltech/MSS