悬在太阳上方的三角形日珥

悬在太阳上方的三角形日珥

The featured image shows the surface of the Sun with a flowing texture in red light. Above the Sun’s surface an unusual triangular prominence hovers. Please see the explanation for more detailed information.
这张特色图片显示了太阳表面在红光下流动的纹理。太阳表面上方有一个不寻常的三角形日珥。有关更多详细信息,请参阅说明。

半人马A的翘曲磁场

半人马A的翘曲磁场

2021年04月21日 Centaurus A’s Warped Magnetic Fields Image Credit: Optical: European Southern Observatory (ESO) Wide Field Imager; Submillimeter: Max Planck Institute for Radio Astronomy/ESO/Atacama Pathfinder Experiment (APEX)/A.Weiss et al; X-ray and Infrared: NASA/Chandra/R. Kraft; JPL-Caltech/J. Keene; Text: Joan Schmelz (USRA) Explanation: When galaxies collide — what happens to their magnetic fields? To help find out, NASA pointed SOFIA, its flying 747, at galactic neighbor Centaurus A to observe the emission of polarized dust — which traces magnetic fields. Cen A’s unusual shape results from the clash of two galaxies with jets powered by gas accreting onto a central supermassive black hole. In the resulting featured image, SOFIA-derived magnetic streamlines are superposed on ESO (visible: white), APEX (submillimeter: orange), Chandra (X-rays: blue), and Spitzer (infrared: red) images….

星系NGC 5775的垂直磁场

星系NGC 5775的垂直磁场

2021年01月27日 The Vertical Magnetic Field of NGC 5775 Image Credit: NRAO, NASA, ESA, Hubble; Processing & Text: Jayanne English (U. Manitoba) Explanation: How far do magnetic fields extend up and out of spiral galaxies? For decades astronomers knew only that some spiral galaxies had magnetic fields. However, after NRAO’s Very Large Array (VLA) radio telescope (popularized in the movie Contact) was upgraded in 2011, it was unexpectedly discovered that these fields could extend vertically away from the disk by several thousand light-years. The featured image of edge-on spiral galaxy NGC 5775, observed in the CHANG-ES (Continuum Halos in Nearby Galaxies) survey, also reveals spurs of magnetic field lines that may be common in spirals. Analogous to iron filings around a bar magnet, radiation from electrons…

涡状星系的磁场

涡状星系的磁场

2021年01月20日 The Magnetic Field of the Whirlpool Galaxy Image Credit: NASA, SOFIA, HAWC+, Alejandro S. Borlaff; JPL-Caltech, ESA, Hubble; Text: Jayanne English (U. Manitoba) Explanation: Do magnetic fields always flow along spiral arms? Our face-on view of the Whirlpool Galaxy (M51) allows a spectacularly clear view of the spiral wave pattern in a disk-shaped galaxy. When observed with a radio telescope, the magnetic field appears to trace the arms’ curvature. However, with NASA’s flying Stratospheric Observatory for Infrared Astronomy (SOFIA) observatory, the magnetic field at the outer edge of M51’s disk appears to weave across the arms instead. Magnetic fields are inferred by grains of dust aligning in one direction and acting like polaroid glasses on infrared light. In the featured image, the field orientations…

银河系的磁场线

银河系的磁场线

2020 June 17 Magnetic Streamlines of the Milky Way Image Credit: ESA, Planck; Text: Joan Schmelz (USRA) Explanation: What role do magnetic fields play in interstellar physics? Analyses of observations by ESA’s Planck satellite of emission by small magnetically-aligned dust grains reveal previously unknown magnetic field structures in our Milky Way Galaxy — as shown by the curvy lines in the featured full-sky image. The dark red shows the plane of the Milky Way, where the concentration of dust is the highest. The huge arches above the plane are likely remnants of past explosive events from our Galaxy’s core, conceptually similar to magnetic loop-like structures seen in our Sun’s atmosphere. The curvy streamlines align with interstellar filaments of neutral hydrogen gas and provide tantalizing evidence…

朱诺探测到的木星磁场

朱诺探测到的木星磁场

2020 February 25 Jupiter’s Magnetic Field from Juno Video Credit: NASA, JPL-Caltech, Harvard U., K. Moore et al. Explanation: How similar is Jupiter’s magnetic field to Earth’s? NASA’s robotic Juno spacecraft has found that Jupiter’s magnetic field is surprisingly complex, so that the Jovian world does not have single magnetic poles like our Earth. A snapshot of Jupiter’s magnetic field at one moment in time, as animated from Juno data, appears in the featured video. Red and blue colors depict cloud-top regions of strong positive (south) and negative (north) magnetic fields, respectively. Surrounding the planet are imagined lines of constant magnetic field strength. The first sequence of the animated video starts off by showing what appears to be a relatively normal dipole field, but soon…

太阳轨道飞行器传送首次测量数据

太阳轨道飞行器传送首次测量数据

2月13日,太阳轨道飞行器的首次测量数据传达地面,向国际科学小组证实了在成功地部署了航天器的仪器吊臂后,航天器上的磁力计状况良好。 版权:ESA;航天器:ESA/ATG Medialab;数据:ESA/Solar Orbiter/磁力计(MAG) 2月10日,欧洲航天局(ESA)的新型太阳探测航天器:太阳轨道飞行器(Solar Orbiter)发射升空。它携带有10个科学仪器,其中4个用来测量航天器周围环境的特性,特别是太阳风(由太阳发出的带电粒子流)的电磁特性。其中3种“原位”仪器(’in situ’ instruments)的传感器设置于4.4米长的吊臂上。 伦敦帝国理工学院的蒂姆•霍伯里(Tim Horbury)是磁力计仪器(Magnetometer instrument)的首席研究员,他表示:“我们所测量的磁场比在地球上所熟知的磁场小数千倍。即便是电线中的电流所产生的磁场也远远超过我们需要测量的磁场。因此,我们将传感器设置于吊臂上,以使其远离航天器内部的所有电子活动。” 吊臂展开时观测磁场 太阳轨道飞行器的吊臂架展开及首次磁场测量 版权:ESA; 航天器:ESA/ATG Medialab; 数据:ESA/Solar Orbiter/MAG [rml_read_more] 位于德国达姆施塔特的欧洲太空运行中心(European Space Operations Centre)的地面控制器在太阳轨道飞行器发射后约21小时打开了磁力计的两个传感器(其中一个位于臂架末端,另一个位于航天器附近)。该仪器记录了吊臂展开之前、期间和之后的数据,使科学家们得以了解航天器对太空环境中测量结果的影响。 蒂姆补充道:“我们收到的数据显示,从航天器附近到部署仪器的实际位置,磁场是如何减小的。这个独立的证据表明吊臂实际上已经成功展开,而且这些仪器确实能够在将来提供准确的科学测量数据。” 发射后将近三天,钛/碳纤维材料的吊臂持续伸展了30分钟,科学家们发现磁场强度下降了大约一个数量级。刚开始观测时,他们所看到的主要是航天器的磁场,但在结束时,他们却第一次观测到了周围环境中明显较弱的磁场。 太阳轨道飞行器搭载了10个科学仪器,其中一些由多个仪器包组成。该航天器的4个“原位”仪器中有3个位于太阳轨道飞行器4.4米长的吊臂上,用于测量航天器附近的环境。 版权:ESA/ATG media lab 来自法国奥尔良物理学和空间环境化学实验室 (Laboratoire de Physique et Chimie de l’Environnement et de l’Espace,LPC2E)的首席联合研究员马修•克雷茨施马尔(Matthieu Kretzschmar)负责位于吊臂上的另一个传感器:无线电和等离子波分析仪(Radio and Plasma Waves instrumen,RPW)上的高频磁力计。他表示:“吊臂展开之前、期间和之后的测量有助于我们识别和表征与太阳风无关的信号(例如来自航天器平台和其他仪器的扰动)。” 他补充道:“航天器在进行了大量地面测试,在特殊的模拟设施中测量它的磁性能,但我们直到现在仍无法在太空中对这一方面进行全面测试,因为测试设备通常会阻止我们达到所需的极低的磁强度。” 接下来,在真正的科学任务开始之前,必须先对这些仪器进行校准。 为科学任务热身 准备开启开创性任务的太阳轨道器的旅程。 版权:ESA/ATG medialab ESA太阳轨道飞行器任务的的副项目科学家Yannis Zouganelis表示:“4月底之前,我们将逐步启用原位仪器,并检查它们是否正常运行。4月底时,我们将对这些仪器的性能有更清晰的认识。我们有望在5月中旬开始收集第一批科学测量数据。” 除了仪器吊臂外,研究太阳风中电磁波和静电波特性的RPW仪器的三根天线也已于2月13日凌晨成功部署完毕。相关的具体测量数据还需加以分析。 除了4个原位仪器外,太阳轨道器还携带了6个遥感仪器(本质上是望远镜),它们将以不同的波长对太阳表面进行成像,获得迄今为止最接近的太阳表面图像。 Yannis补充道:“遥感仪器将在接下里几个月内投入使用,我们期待在6月对其进行进一步测试,届时太阳轨道飞行器将更距离太阳更近一些。” 解开太阳的秘密 这两套仪器将使科学家们能够将太阳上发生的事件与太阳风中观测到的现象联系起来,从而能够解决关于为期11年的太阳活动周期、太阳磁场的产生以及太阳风粒子如何加速到很高能量等谜团。 ESA太阳轨道飞行器任务的项目科学家丹尼尔•穆勒(Daniel Müller)表示:“太阳轨道飞行器任务中的10件仪器将像管弦乐队中的乐器一样共同演奏。我们的排练刚刚开始,其他乐器也将陆续加入。一旦集合完整,再过几个月后,我们就可以听到太阳的交响乐了。” 太阳轨道飞行器任务由ESA领导,NASA也高度参与其中。主承包商是位于英国斯蒂夫尼奇的空中客车防务及航天公司(Airbus Defence and Space)。太阳轨道飞行器任务是“宇宙憧憬2015-25”计划(Cosmic Vision 2015-25 programme)中执行的第一个“中级”科学任务。 来源: http://www.esa.int/Science_Exploration/Space_Science/Solar_Orbiter/First_Solar_Orbiter_instrument_sends_measurements

旋涡星系M77的磁场

旋涡星系M77的磁场

2019 December 16 The Magnetic Fields of Spiral Galaxy M77 Image Credit: NASA, SOFIA, HAWC+; JPL-Caltech, Roma Tre. U.; ESA, Hubble, NuSTAR, SDSS Explanation: Can magnetic fields help tell us how spiral galaxies form and evolve? To find out, the HAWC+ instrument on NASA’s airborne (747) SOFIA observatory observed nearby spiral galaxy M77. HAWC+ maps magnetism by observing polarized infrared light emitted by elongated dust grains rotating in alignment with the local magnetic field. The HAWC+ image shows that magnetic fields do appear to trace the spiral arms in the inner regions of M77, arms that likely highlight density waves in the inflowing gas, dust and stars caused by the gravity of the galaxy’s oval shape. The featured picture superposes the HAWC+ image over diffuse…

我们银河系中央的磁场

我们银河系中央的磁场

2019 June 19 我们银河系中央的磁场 影像来源: NASA, SOFIA, Hubble 说明:我们银河系中央的磁场是什么样子的?为了找到答案,美国航天局的索菲亚平流层红外天文台(SOFIA)-一架由改装过的波音747搭载的望远镜-使用一种名为高分辨率机载宽带摄像机(HAWC+)的设备对中央区域进行了拍摄。HAWC+通过观察与局部磁场呈一致方向旋转的细长尘埃颗粒发出的红外偏振光来绘制磁力图。目前,位于我们银河系中央的是一个特大质量黑洞,它能吞噬最近被摧毁恒星所释放的气体。然而,与活跃星系中央黑洞的吸收率相比,我们银河系的黑洞相对比较安静。这幅特征影像提供了一个线索,关于为什么周围的磁场可能会将气体引入黑洞中,从而照亮黑洞的外部,或者迫使气体进入吸积盘保持停滞的状态,导致黑洞变得不太活跃,至少发现这样的状态是暂时的。仔细观察这幅特征影像,它看起来像是超现实艺术和引力天体物理学的结合,通过详细描述人马座A附近的尘埃环(我们银河系中央的黑洞)内部和周围磁场的细节,揭示了这条有效的线索。 Our Galaxy’s Magnetic Center Image Credit: NASA, SOFIA, Hubble Explanation: What’s the magnetic field like in the center of our Milky Way Galaxy? To help find out, NASA’s SOFIA — an observatory flying in a modified 747 — imaged the central region with an instrument known as HAWC+. HAWC+ maps magnetism by observing polarized infrared light emitted by elongated dust grains rotating in alignment with the local magnetic field. Now at our Milky Way’s center is a supermassive black hole with a hobby of absorbing gas from stars it has recently destroyed. Our galaxy’s black hole, though, is relatively quiet compared to the absorption rate of the central black holes in active galaxies. The featured image…