NASA SpaceX Crew-2在空间站的科学之旅

NASA SpaceX Crew-2在空间站的科学之旅

在国际空间站上呆了6个多月后,NASA SpaceX Crew-2任务的宇航员们将返回地球。四名机组成员——NASA宇航员谢恩·金姆布罗和 梅根·麦克阿瑟、日本宇宙航空研究开发机构(JAXA)宇航员星出彰彦和欧洲航天局(European Space Agency)宇航员托马斯·佩斯凯——将乘坐SpaceX载人龙飞船返回地球。 这些机组成员在轨道实验室中为数百项科学调查和技术演示做出了贡献。这些宝贵的科学研究有助于为人类未来的太空探索任务做好准备,同时为地球上的人类带来众多创新和好处。下面是在Crew-2任务期间完成的一些科学里程碑。 下载本文中所有照片的全分辨率版本。 力量的考验 影像来源:NASA 麦克阿瑟在国际空间站上的生命科学手套箱中进行卡迪纳尔肌肉的研究。随着地球上人们年龄的增长,他们的肌肉质量下降,这种情况称为肌肉减少症。由于这种情况进展缓慢,所以很难找到可能治疗它的药物。宇航员在太空飞行期间也可能经历肌肉质量的损失,但速度要快得多。卡迪纳尔肌肉实验测试了在太空中培养的工程组织是否可以利用这种加速的损失,并支持开发一个模型,在人体临床试验之前快速评估可能的药物。 超声波 影像来源:NASA 佩斯凯使用超声波镊子实验装置。该项目的目标是开发声学镊子,利用声音在微重力下对材料进行远程和非接触操作。超声波束的形状使其能够捕捉物体。通过移动超声波束,可以将物体高精度地移动到新的位置。 地球之眼 影像来源:NASA 当国际空间站在距巴西海岸263英里的大西洋上空绕轨道运行时,金布罗在下面为地球拍照。Crew Earth Observations记录了地球是如何随着时间而变化,从城市增长和水库建设等人为造成的变化到飓风、洪水和火山爆发等自然动态事件。 保持低温 影像来源:NASA 一些科学样本和物资需要低温保存。霍希德与船上一个名为MELFI(国际空间站的零下80度实验室冷冻库)的低温设施合作,安全地储存样本,直到样本返回地球。 寻找火花 影像来源:NASA 了解火在太空中的传播和行为方式对于未来宇航员的安全以及理解和控制地球上的火势至关重要。麦克阿瑟更换了燃烧集成机架内部的组件,该机架能够对空间站上的火焰、燃料和烟尘进行安全研究。在Crew-2的任务中,燃烧研究人员甚至首次在太空中实现了冷火焰。 晶莹剔透 影像来源:NASA 金布罗在美国命运实验室模块中设置了一台显微镜,用于观察和拍摄实时蛋白质晶体生长实验的样品。 这项生物技术研究展示了在微重力下生产高质量蛋白质晶体的新方法,从而有可能开发出更好的药物来治疗地球上的各种疾病,并推动太空商业化。 宇航员观察晶体,报告它们的生长情况,并根据最初的观察结果做出改变。 增强现实技术维修 佩斯凯戴着Sidekick增强现实(AR)护目镜,可在操作期间协助机组人员进行科学实验和轨道维护任务。在第65号远征队任务期间进行的 T2 增强现实(T2AR)项目演示了空间站成员如何使用增强现实来检查和维护对机组人员健康和研究目标至关重要的科学和锻炼设备,而无需地面团队的帮助。了解有关如何在车站上使用AR的更多信息。 这里有辣椒了 影像来源:NASA NASA的植物栖息地-04(PH-04)实验首次在国际空间站上培育辣椒。宇航员们在收获之前对哈奇辣椒进行了大约四个月的照料。宇航员吃了一些辣椒,其余的将被送回地球进行分析。由于发芽和生长时间较长,这个植物试验将是迄今为止在空间站上进行的最复杂的试验之一。这项研究将增加美国宇航局为长期太空任务种植粮食作物的知识。 感知重力 星出彰彦将细胞样本插入空间站的细胞生物学实验设施中。作为细胞重力感应肌肉萎缩研究的一部分,人们正在观察这些细胞如何适应失重状态。研究表明,动物体内的单个细胞可以检测到重力,但它们是如何做到的,在很大程度上还不得而知。JAXA的一项调查——细胞重力感应(Cell Gravisensing),分析了太空飞行过程中细胞应力纤维张力变化的作用。 研究结果可以促进药物的开发,以治疗地球上的肌肉萎缩和骨质疏松症,并有助于预防或治疗宇航员在太空飞行期间经历的肌肉萎缩和骨质流失。 从分子角度看材料 影像来源:NASA 金布罗在流体集成架(FIR)内安装和配置了一个新的高级胶体实验模块。这项工作支持ACE-T9流体物理学研究,该研究使用FIR的光镜模块对胶体(悬浮在液体中的微小颗粒的混合物)进行成像。这组实验不仅帮助科学家们为未来的胶体研究做准备,而且还能深入了解颗粒形状、胶体相互作用和结构之间的关系。对胶体的研究可以使从牙膏到药物的所有领域受益。 研究蠕虫以了解肌肉 影像来源:NASA 分子肌肉实验2(MME-2)使用微小的秀丽隐杆线虫来研究人类在空间的健康变化。在这里,Pesquet将调查安装在哥伦布实验室模块的库比克孵化器内,该孵化器可以创造不同的重力条件来进行测试。MME-2测试了一系列药物,看它们是否能改善太空中的健康状况,可能会为地球上的检测带来新的治疗靶点。 舱内的三只蜜蜂 影像来源:NASA 麦克阿瑟与Astrobee机器人自由飞行器合影,以支持Kibo机器人编程挑战(RPC)。Kibo-RPC允许学生创建程序来控制Astrobee。2021年9月20日,金布罗打开包装,进行健康检查,并在国际空间站上激活了立方体的“皇后”。 这是2019年前往太空实验室后,绿色Astrobee女王第一次在轨道上“醒来”。 水熊虫时间 影像来源:NASA Tardigrades,也被称为水熊虫,拥有在非常恶劣的环境中生存的超能力。了解他们如何忍受极端环境——包括一名宇航员在太空中经历的微重力和高辐射水平——可能会更好地指导保护人类免受长期太空旅行压力的研究。空间站研究“细胞科学-04”可以帮助揭示缓步动物如何做到这一点。 这里星出彰彦在生命科学手套箱内进行这项实验。 追踪微生物 影像来源:NASA 监测空间站上的微生物对于了解轨道实验室的微生物组非常重要。麦克阿瑟从国际空间站内的表面收集微生物样本,用于分析和跟踪“微生物追踪-3”的调查。这项研究可以帮助确定与封闭式居住有关的任何微生物的特征,并预测那些可能对宇航员健康构成威胁的微生物。 棉花种植 影像来源:NASA 金布罗检查了棉花植株的生长情况,以进行“目标改良棉花轨道栽培”(TICTOC)空间植物学研究。在某些胁迫条件下,过度表达某一基因的棉花植株表现出更强的抗旱性,并且比不表达该基因的植株多产出20%的棉花纤维。 这种抗逆性暂时与具有增强的根系系统有关,该系统可以利用更大体积的土壤获取水和养分。TICTOC 研究根系结构如何在幼苗建立的关键阶段影响植物恢复力、水分利用效率和碳固存。 解冻科学 影像来源:NASA 星出彰彦将日本实验舱内的样本解冻,用于JAXA太空胚胎研究,以了解太空环境如何影响繁殖的关键阶段。在执行任务期间,他参与了JAXA的其他一些实验,包括抗萎缩实验,它研究了预防和治疗太空引起的肌肉萎缩和地球肌肉疾病的方法。 随波逐流 影像来源:NASA 在微重力条件下种植植物是可能的,但向根部提供足够的水是一个挑战。为了探索种植太空花园的新选择,植物水管理实验评估了一个水培植物系统。麦克阿瑟帮助测试这个新的水输送系统,这个系统可能会改善全世界缺水地区的农业技术。 360度的太空 影像来源:NASA 想过体验太空漫步吗?国际空间站体验项目试图让你在不去太空的情况下,通过拍摄360度的太空行走,尽可能接近太空。在这里,佩斯凯从日本实验舱的气闸中取出一台三维虚拟现实摄像机。9月12日,这台摄像机拍摄了佩斯凯和星出彰彦的太空行走,以修改国际空间站的4号端口桁架结构,用于未来安装一个推出式太阳能阵列。 返回地球后,Crew-2的宇航员将继续担任人类志愿者研究对象,为推进太空医学和支持未来的载人航天任务提供宝贵的生理数据。 关注@ISS_Research、空间站研究和技术新闻或我们的Facebook,获取每日空间站更新。如欲查看空间站经过您所在的城市的时间,请访问Spot the Station。 参考来源: https://www.nasa.gov/mission_pages/station/research/news/scientific-journey-on-ISS-crew-2

NASA的NICER发现了蟹状星云脉冲星射电脉冲爆发的X射线增强

NASA的NICER发现了蟹状星云脉冲星射电脉冲爆发的X射线增强

一项全球科学合作利用NASA国际空间站上的中子星内部成分探测器(NICER)望远镜的数据,发现了蟹状星云中脉冲星伴随射电爆发的X射线增强。这一发现表明,这些被称为巨型射电脉冲的爆发,释放出的能量远比之前猜测的要多。 NASA的中子星内部成分探测器(NICER)观测显示,蟹状星云脉冲星的随机巨型射电脉冲产生了X射线增强。观看视频了解更多信息。 视频来源:NASA戈达德太空飞行中心 脉冲星是一种快速旋转的中子星,是一颗爆炸后形成超新星的恒星的破碎的、城市大小的核心。一颗年轻的孤立中子星每秒可以旋转数十次,其旋转的磁场可以增强无线电波、可见光、X射线和伽马射线。如果这些光束扫过地球,天文学家就会观察到类似时钟的脉冲发射,并将其归类为脉冲星。 “在已编入目录的2800多颗脉冲星中,蟹状星云脉冲星是仅有的几颗发出巨型射电脉冲的天体之一,这些脉冲零星出现,其亮度可能是常规脉冲的数百倍到数千倍。”位于日本埼玉县和光市的RIKEN先锋研究集群的首席科学家榎户辉扬(Teruaki Enoto)说。”经过数十年的观察,只有蟹状星云脉冲星被证明可以通过频谱其他部分的发射来增强其巨大的射电电脉冲。” 蟹状星云是超新星爆炸产生的六光年宽的碎片云,其中有一颗每秒旋转30次的中子星,在X射线和射电波段是天空中最亮的脉冲星之一。这张哈勃太空望远镜图像的合成图揭示了爆炸中排出的不同气体:蓝色显示中性的氧,绿色显示单电离的硫,红色表示双电离的氧。 影像来源:NASA, ESA, J. Hester and A. Loll (Arizona State University) 这项新的研究将出现在4月9日的《Science》杂志上,现在可以在线获取,该研究分析了有史以来从脉冲星收集的最大数量的同步X射线和无线电数据。它将与这种增强现象相关的观测能量范围扩大了数千倍。 蟹状星云及其脉冲星位于约6500光年外的金牛座,形成于一颗超新星,其光线于1054年7月到达地球。这颗中子星每秒旋转30次,在X射线和射电波长下,它是天空中最亮的脉冲星之一。 在2017年8月至2019年8月期间,榎户辉扬和他的同事们利用NICER在X射线中反复观测蟹状星云脉冲星,X射线的能量高达1万电子伏特,即可见光的数千倍。在NICER观测的同时,该团队还使用日本的两台地基射电望远镜中的至少一台–鹿岛宇宙技术中心的34米天线和日本宇宙航空研究开发机构宇田深空中心的64米天线对该天体进行了研究,这两台天线的工作频率均为2千兆赫。 在2017年至2019年期间,NASA的中子星内部成分探测器(NICER)和日本的射电望远镜同时研究了蟹状星云脉冲星。在这张仅代表NICER观测13分钟的可视化图片中,数以百万计的X射线被绘制成相对于脉冲星的旋转相位,其中心是最强的射电发射。为了清晰起见,图中显示的是两次完整的旋转。当脉冲星光束扫过我们的视线时,它们会在每次旋转中产生两个峰值,较亮的那个峰值与更多的巨型射电脉冲有关。NICER的数据首次显示,与这些事件相关的X射线发射略有增加。 影像来源:NASA’s Goddard Space Flight Center/Enoto et al. 2021 联合数据集有效地为研究人员提供了近一天半的X射线和无线电覆盖时间。总的来说,他们捕捉到了370万次脉冲星自转的活动,捕获了大约26000个巨型射电脉冲。 巨型射电脉冲爆发得很快,在百万分之一秒内达到峰值,并且不可预测地发生。然而,当它们发生时,却与规律的时钟脉动一致。 NICER能在在100纳秒之内记录下其探测到的每一个X射线的到达时间,但望远镜的计时精度并不是它在这项研究中的唯一优势。 “NICER观测明亮X射线源的能力几乎是脉冲星及其星云亮度总和的四倍,”NASA位于马里兰州格林贝尔特的戈达德太空飞行中心的项目科学负责人扎文·阿尔祖马尼亚(Zaven Arzoumanian)说。”因此,这些观测结果基本上没有受到堆积的影响(堆积指的是探测器将两束或两束以上的X射线视为一个单一事件),而其他一些问题则使早期的分析更加复杂。” 榎户辉扬的团队综合了所有与巨型射电脉冲相吻合的X射线数据,现了与之同步发生的X射线增强的幅度约为4%。这与2003年发现的可见光增加3%的现象非常相似。与蟹状星云脉冲星的常规脉冲和巨型脉冲之间的亮度差异相比,这些变化非常小,为理论模型的解释提供了挑战。 这些X射线的增强表明,巨型射电脉冲是产生横跨电磁波谱(从无线电到X射线)的发射的基本过程的一种表现。而由于X射线的冲击力是无线电波的数百万倍,即使是适度的增加也代表着巨大的能量贡献。研究人员得出的结论是,与巨型射电脉冲相关的总发射能量比之前仅从无线电和光学数据中估计的高出几十到几百倍。 “我们仍然不知道脉冲星是如何或在哪里产生它们复杂而广泛的辐射,令人欣慰的是,我们为这些迷人天体的多波长谜题做出了贡献。”榎户辉扬说。 NICER是美国宇航局探索计划中的机遇号天体物理学任务,利用太阳物理学和天体物理学科学领域的创新、精简和高效的管理方法,为来自太空的世界级科学研究提供频繁的飞行机会。NASA的空间技术任务理事会支持该任务的SEXTANT部分,展示基于脉冲星的航天器导航。 参考来源: https://www.nasa.gov/feature/goddard/2021/nasa-s-nicer-finds-x-ray-boosts-in-the-crab-pulsar-s-radio-bursts

波音公司商用机组的飞行测试将为未来的科学铺平道路

波音公司商用机组的飞行测试将为未来的科学铺平道路

波音公司的无人轨道飞行测试(OFT)是美国国家航空航天局商业乘务计划的第二次无人飞行测试,该计划与航空航天工业合作,自2011年以来首次在美国本土用美国火箭和宇宙飞船发射宇航员。 10月16日,波音公司的CST-100星际飞船的乘员舱在佛罗里达州肯尼迪航天中心的商业乘员和货物处理设施(C3PF)内被送上服务舱,这是该公司飞往国际空间站的轨道飞行测试的一部分,也是NASA商业乘员计划的一部分。 来源:Boeing 12月20日,当波音公司的Starliner航天飞机搭乘美国联合发射联盟的“阿特拉斯5号”火箭从佛罗里达州卡纳维拉尔角空军基地的航天发射场41号发射中心发射升空时,研究太空中物体运动规律的科学家们将成为热切的观众,屏息以待。 对于NASA的执行任务,Starliner将能够发射多达4名机组人员和大约220磅的货物,这使得机组人员的规模得以扩大,增加了在独特的微重力环境中进行研究的时间,并将更多的科学成果带回地球。 波音公司的克里斯·弗格森(Chris Ferguson)帮助左侧的NASA宇航员尼科尔·曼(Nicole Mann)和右侧的迈克·芬克(Mike Fincke)进行太空行走训练。 来源:Boeing 安全、可靠和具有成本效益的进出空间站的运输方式,使得维持空间站宇航员的完整组员成为可能,最大限度地把时间用于轨道实验室的科学研究。迄今为止,来自108个国家/地区的4000多名研究人员在空间站上进行了2700多项实验,涉及生物/生物技术、地球和空间科学、教育、人类研究、物理科学和技术发展等领域。 这项科学工作影响深远。自从1998年以来,空间站项目已经产生了超过2100种成果,其中许多发表在顶级科学期刊上。在空间站上进行的科学研究涵盖了13个主要学科中的12个,在日益增长的空间经济和私营部门对空间的兴趣中发挥着重要作用,并为人类带来了许多不同的好处。像波音的Starliner和SpaceX的Crew Dragon这样的商业载人飞船将使这项重要的科学工作变得更加重要。 OFT任务获得的数据支持波音公司的机组人员运输系统的认证,用于运送宇航员往返空间站。这是朝着宇航员飞行测试迈出的下一步,它将把NASA宇航员尼科尔·曼(Nicole Mann)和迈克·芬克(Mike Fincke)以及波音的克里斯·弗格森(Chris Ferguson)送往太空站,他们将在那里停留以进行扩展任务。NASA将验证波音公司系统的性能,然后再把宇航员送上宇宙飞船。去年11月,Starliner在美国陆军新墨西哥州白沙导弹试验场的32号发射场完成了一次发射台中止测试。 波音公司的CST-100 Starliner的四个发射中止引擎和几个轨道机动和姿态控制推进器在该公司的发射台中止试验中点火。在新墨西哥州白沙导弹试验场的发射基地32号发射场进行的测试,以16万磅的推力将航天器推离了试验台。 来源:NASA 2014年9月,NASA选择了SpaceX和波音公司来制造集成的航天器,火箭和相关系统,以载运宇航员执行NASA任务。现在,这些公司正在建造和运营这种新一代的人类额定载具。 有关国际空间站的每日更新,请关注@ISS_Research、空间站研究和技术新闻或我们的Facebook。如果你想有机会在你所在的城市看到空间站飞过,请查看太空站定位。 来源: https://www.nasa.gov/mission_pages/station/research/news/boeing-uncrewed-flight-test-starliner-future-science