NASA的星城任务将一群卫星送入轨道
今年7月,NASA将派遣一个由四个六单元(6U)大小的立方体卫星组成的团队进入绕地球轨道,看看他们是否能够在没有任务控制实时更新的情况下独自合作。
今年7月,NASA将派遣一个由四个六单元(6U)大小的立方体卫星组成的团队进入绕地球轨道,看看他们是否能够在没有任务控制实时更新的情况下独自合作。
天文学家发现了一颗地球大小的系外行星,或者说是太阳系以外的行星,它可能布满了火山。
Vance I. Oyama holds a readout from the gas chromatograph in the life detection laboratory at NASA’s Ames Research Center in this picture from April 22, 1965. Oyama had a long career at NASA, during which he served as Life Detection Systems branch chief; he examined lunar soil samples and also helped design experiments for the Viking Mars Landers. Both he and his brother Jiro pioneered new areas of life sciences research at Ames. Visit the Asian American, Native Hawaiian, and Pacific Islander Heritage Month gallery. Image Credit: NASA/Emerson Shaw 1965年4月22日,在NASA艾姆斯研究中心的生命探测实验室里,万斯·I·大山(Vance I. Oyama)拿着气相色谱仪的读数。大山在NASA工作了很长时间,在此期间他担任生命探测系统部门的负责人;他调查过月球土壤样本,并帮助设计了维京号火星着陆器的实验。他和他的兄弟次郎都在艾姆斯大学开创了生命科学研究的新领域。 浏览亚裔美国人、夏威夷原住民和太平洋岛民传统月画廊。 影像来源:NASA/Emerson Shaw
NASA的詹姆斯·韦伯太空望远镜首次捕捉到太阳系外行星大气层中存在二氧化碳的明确证据。观测到一颗气态巨行星围绕着700光年外的类太阳恒星运行,这为了解行星的组成和形成提供了重要的见解。这一发现被《自然》杂志接受发表,为未来韦伯可能能够探测和测量较小岩质行星稀薄大气中的二氧化碳提供了证据。 WASP-39b是一颗热气体巨星,质量约为木星的四分之一(约与土星相同),直径是木星的1.3倍。它的极度膨胀部分与它的高温有关(约1,600℉或900℃)有关。与太阳系中更冷、更紧凑的气态巨行星不同,WASP-39b的轨道非常接近其恒星——只有太阳和水星之间距离的八分之一——在四个地球日内完成了一次公转。2011年报告的这颗行星,是基于地面探测而被发现,这颗行星凌日或经过恒星前方时,其主星发出的光线出现了微妙的周期性变暗。 此前,包括NASA的哈勃和斯皮策太空望远镜在内的其他望远镜观测显示,该行星大气层中存在水蒸气、钠和钾。韦伯无与伦比的红外灵敏度现在也证实了这个星球上存在二氧化碳。 过滤星光 像WASP-39b这样的凌日行星,我们从侧面而不是从上方观察其轨道,可以为研究人员提供探测行星大气的理想机会。 在凌日期间,一些星光完全被行星遮住(导致整体变暗),一些星光则通过行星的大气层传播。 由于不同的气体吸收不同的颜色组合,研究人员可以分析不同波长光谱中透射光的亮度差异,以确定大气的确切成分。WASP-39 b结合了膨胀的大气和频繁的凌日,是透射光谱的理想目标。 韦伯近红外光谱仪(NIRSpec)的一系列光变曲线显示了随着时间的推移,当行星在2022年7月10日凌日时,来自WASP-39恒星系统的三种不同波长(颜色)的光的亮度变化。 影像来源:插图: NASA, ESA, CSA, and L. Hustak (STScI); 科学分析: The JWST Transiting Exoplanet Community Early Release Science Team 首次明确检测二氧化碳 研究团队使用韦伯的近红外光谱仪(NIRSpec)对WASP-39b进行观测。在这颗系外行星大气的光谱中,一个4.1到4.6微米的小山丘首次提供了清晰、详细的证据,证明在在太阳系外行星上发现了二氧化碳。 “数据一出现在我的屏幕上,巨大的二氧化碳特征就吸引了我,”约翰·霍普金斯大学研究生、JWST凌日系外行星社区早期发布科学团队团队的成员扎法尔·鲁斯塔姆库洛夫说,该团队进行了这项研究。“这是一个特殊的时刻,跨过了系外行星科学的一个重要门槛。” 以前,没有一个观测站在系外行星透射光谱的3到5.5微米范围内测量到如此多的单个颜色亮度的细微差异。获取光谱的这一部分对于测量水、甲烷和二氧化碳等气体的丰度至关重要,这些气体被认为存在于许多不同类型的系外行星中。 “在WASP-39 b上探测到如此清晰的二氧化碳信号,对于探测较小的类地行星上的大气层来说是个好兆头。”该团队的负责人、加州大学圣克鲁斯分校的纳塔莉·巴塔哈说。 了解行星大气层的组成很重要,因为它能告诉我们行星的起源和演化过程。“二氧化碳分子是行星形成过程中的敏感示踪剂。”该研究小组的另一名成员、亚利桑那州立大学的迈克·莱恩说。“通过测量这一二氧化碳特征,我们可以确定形成这颗气态巨行星使用了多少固态物质和多少气态物质。在未来十年,JWST将对各种行星进行这一测量,从而深入了解行星如何形成的细节,以及我们自己的太阳系的独特性。” 韦伯的近红外光谱仪(NIRSpec)于2022年7月10日捕获了热气体巨系外行星WASP-39b的透射光谱,揭示了太阳系外行星存在二氧化碳的第一个明确证据。这也是迄今为止捕获的第一个详细的系外行星透射光谱,覆盖波长在3到5.5微米之间。 影像来源:插图: NASA, ESA, CSA, and L. Hustak (STScI); 科学分析: The JWST Transiting Exoplanet Community Early Release Science Team 早期发布科学计划 对WASP-39b的NIRSpec棱镜观测只是一项更大调查的一部分,该调查包括使用多个韦伯仪器对该行星的观测,以及对其他两颗凌日行星的观测。这项调查是早期发布科学计划的一部分,旨在尽快为系外行星研究界提供强大的韦伯数据。 “我们的目标是快速分析早期发布的科学观测结果,并开发供科学界使用的开源工具。”牛津大学的联合研究员费雯·帕姆提尔解释说。“这使得来自世界各地的贡献成为可能,并确保未来几十年的观测将产生最好的科学成果。” 来自NASA艾姆斯研究中心的论文合著者娜塔莎·巴塔哈补充说,“NASA的开放科学指导原则以我们的早期发布科学工作为中心,支持包容、透明和协作的科学过程。” 詹姆斯·韦伯太空望远镜是世界上首屈一指的太空科学天文台。韦伯将解开我们太阳系中的谜团,展望其他恒星周围的遥远世界,探索我们宇宙的神秘结构和起源以及我们在其中的位置。韦伯是由NASA及其合作伙伴 ESA和CSA领导的一项国际计划。 参考来源: https://www.nasa.gov/feature/goddard/2022/nasa-s-webb-detects-carbon-dioxide-in-exoplanet-atmosphere
In this picture from 2016, our Super Guppy, a specialized aircraft with a unique hinged nose, lands at Moffett Field at NASA Ames. Boasting an immense cargo area that is 25 feet in diameter and 111 feet long, the Super Guppy can carry items that are virtually impossible to fit inside other cargo aircraft. In early August 2022, it arrived at Marshall with a structural test article of part of NASA’s mega Moon rocket. The hardware was used in test campaigns at Marshall and NASA’s Kennedy Space Center in Florida and was returned to Marshall for storage. Image Credit: NASA/Don Richey 在这张2016年的照片中,我们的超级古比鱼,一架具有独特铰链机头的专用飞机,降落在NASA艾姆斯的莫菲特机场。超级古比鱼拥有一个直径25英尺、长111英尺的巨大货运区域,可以携带其他货机几乎无法容纳的物品。 2022年8月上旬,它带着NASA巨型月球火箭一部分的结构测试件抵达马歇尔。这些硬件在马歇尔和佛罗里达州NASA肯尼迪航天中心的测试活动中使用,并被送回马歇尔储存。 图片来源:NASA/Don Richey
2022年6月28日,周二,在新西兰马希亚半岛的火箭实验室1号发射场,地月自主定位系统技术操作和导航实验(或称CAPSTONE)搭载火箭实验室的电子火箭发射升空。 影像来源:Rocket Lab NASA的立方体卫星(CubeSat)设计用于测试一个独特的月球轨道,目前它在太空中安全运行,并进入了月球之旅的第一段路程。该航天器正朝着未来计划用于门户(Gateway)的轨道前进,门户是该机构及其商业和国际合作伙伴建造的一个月球空间站,将支持NASA的阿尔忒弥斯项目,包括宇航员任务。 “CAPSTONE是一个例子,说明了与商业伙伴合作对NASA探索月球及其他星球的雄心计划是多么关键。”空间技术任务理事会副局长吉姆·勒特说。“我们对此次任务的成功开始感到兴奋,并期待着CAPSTONE到达月球后能做些什么。” CAPSTONE目前处于近地轨道,该航天器将需要大约四个月的时间才能到达其目标月球轨道。NASA邀请公众使用NASA“太阳系之眼”交互式实时3D数据可视化实时跟踪航天器的旅程。从发射后大约一周开始,虚拟地与立方体卫星一起飞行,模拟我们的太阳系视图。NASA将在NASA的艾姆斯研究中心主页以及Twitter和Facebook上发布关于何时在可视化中看到顶点的更新。 CAPSTONE与火箭实验室的月球光子(Lunar Photon)相连,这是一个星际第三级装置,将把CAPSTONE送往深空。发射后不久,月球光子与第二级电子(Electron)分离。在接下来的6天里,光子引擎将定期点火,使其加速到近地轨道之外,光子将在一个弹道月球转移轨道上释放立方体卫星到月球。然后,CAPSTONE将利用自己的推进力和太阳的引力导航到月球。引力驱动轨道将大大减少立方体卫星到达月球所需的燃料量。3 “将航天器交付发射是整个任务团队的一项成就,包括NASA和我们的行业合作伙伴。我们的团队现在正在准备在6天内分离和初始采集航天器。”CAPSTONE首席研究员兼代表NASA拥有和运营CAPSTONE的先进太空公司(Advanced Space)首席执行官布拉德利·奇塔姆表示。“到目前为止,我们已经学到了很多东西,我们对人类重返月球的重要性充满热情,这一次我们要留下来!” 在月球上,CAPSTONE将进入一个被称为近直线晕轨道(NRHO)的细长轨道。一旦到达NRHO,CAPSTONE将在月球北极附近1000英里范围内飞行,最远距离南极43500英里。它将每六天半重复一次周期,并将此轨道保持至少六个月,以研究动力学。 “CAPSTONE在许多方面都是一个探路者,它将在其任务时间段内展示多项技术能力,同时在一个从未飞行过的绕月轨道上航行。”位于加州硅谷NASA艾姆斯研究中心CAPSTONE项目经理埃尔伍德·阿西德说。“CAPSTONE正在为阿尔忒弥斯、门户以及未来月球运行的商业支持奠定基础。” 在任务期间,CAPSTONE将提供有关在NRHO中操作的数据,并展示关键技术。该任务的地月自主定位系统由先进太空公司在NASA小企业创新研究项目的支持下开发,是一个航天器对航天器的导航和通信系统,将与NASA的月球侦察轨道器一起确定两个绕月航天器之间的距离。这项技术可以让未来的航天器在不完全依赖地球跟踪的情况下确定其在太空中的位置。CAPSTONE还在其无线电中内置了一种新的精确单向测距能力,可以减少太空操作所需的地面网络时间。 除了主办CAPSTONE的发射活动外,新西兰商务、创新和就业部以及坎特伯雷大学领导的一个团队正在与NASA合作进行一项跟踪绕月航天器的研究。新西兰帮助制定了《阿尔忒弥斯协议》——该协议确立了一套实用的原则,以指导参与NASA 21世纪月球探测计划的国家之间的空间探索合作。2021年5月,新西兰成为第11个签署《阿尔忒弥斯协议》的国家。 这颗微波炉大小的立方体卫星由人族轨道公司泰瓦克纳米卫星系统设计和制造。CAPSTONE包括恒星探索公司、太空动力学实验室、Tethers Unlimited公司和猎户座太空系统公司的贡献。NASA太空技术任务理事会(STMD)内的小型航天器技术项目资助了该示范任务。该项目位于加利福尼亚州硅谷的美国宇航局艾姆斯研究中心。CAPSTONE导航技术的开发得到了NASA小型企业创新研究和小型企业技术转让(SBIR/STTR)项目的支持,该项目也在STMD范围内。NASA勘探系统开发任务局下属的阿尔忒弥斯运动发展部门为发射提供资金并支持任务操作。佛罗里达州NASA肯尼迪航天中心的发射服务项目负责管理发射服务。NASA的喷气推进实验室通过NASA的深空网络、Iris无线电设计和开创性的单向导航算法支持通信、跟踪和遥测下行链路。 如欲了解有关任务的更多信息,请访问: nasa.gov/capstone 参考来源: https://www.nasa.gov/press-release/capstone-launches-to-test-new-orbit-for-nasa-s-artemis-moon-missions
太阳发出中等水平的太阳耀斑,并于美国东部时间2015年10月1日晚上8点13分达到顶峰,美国国家航空航天局(NASA)的太阳动力学天文台(SDO)捕捉到了这一事件的图像。 来源:NASA/SDO NASA已选定两项科学任务:多缝隙太阳探测器(MUSE)任务和HelioSwarm任务,以帮助进一步提高人类对太阳活动、日地关系以及不断变化的空间环境的理解。这两项任务有助于加深人类对宇宙的理解,并提供关键信息以帮助保护宇航员、卫星和通信信号,例如全球定位系统(GPS)。 NASA总部负责科学事务的副局长托马斯·祖尔布钦(Thomas Zurbuchen)表示 :“MUSE任务和HelioSwarm任务将为太阳大气和空间天气提供更为深入的新见解。这两项任务不仅扩展了NASA其他太阳物理学任务的科学内容,还为了解太阳奥秘提供了独特视角和创新方法。” MUSE任务 MUSE任务将帮助科学家了解日冕加热和太阳耀斑喷发驱动机制等空间天气事件的基础问题。该任务将通过多缝隙太阳探测器(Multi-slit Solar Explorer, 简称MUSE)来观察太阳的极端紫外线辐射,并获得有史以来分辨率最高的太阳过渡区和日冕的图像,从而更深入地了解太阳大气的物理性质。 该任务还将提供来自太阳物理学研究的补充性观测数据,如极紫外光谱望远镜(Extreme UltraViolet Spectroscopic Telescope)和地面观测站等。 NASA总部太阳物理学部主任尼古拉·福克斯(Nicola Fox)表示 :“MUSE任务将助力填补与日地关系相关的关键知识鸿沟。它将为空间天气提供更多见解,并对太阳物理学任务组中的一系列其他任务进行补充。” MUSE任务的首要目标是研究日冕加热和不稳定的原因,如耀斑和日冕物质抛射,并深入了解日冕的基本等离子体特性。探测器将在聚焦于太阳上太阳活动活跃的一片广阔区域的视场中拍摄太阳耀斑带演变的高分辨率图像。 MUSE任务的首席研究员是来自位于加州帕洛阿尔托的洛克希德-马丁先进技术中心(LMATC)的巴特·德庞蒂奥(Bart DePontieu)。这项任务的预算为1.92亿美元。LMATC负责管理该任务。 HelioSwarm任务 HelioSwarm任务是一个由九个航天器组成的航天器集群,将首次对磁场波动和被称作太阳风湍流的太阳风活动进行多尺度的空间测量。太阳最外层的大气层,即日球层,涵盖太阳系中的一片广阔区域。太阳风在日球层中传播,它们与行星磁层的相互作用以及日冕物质抛射等干扰活动会对太阳风的的湍流造成影响。 研究大面积区域的太阳风湍流需要从空间的不同点位同时对等离子体进行多点测量。HelioSwarm任务由一个中心航天器和八个共轨小卫星组成,这些卫星彼此之间以及和中心航天器之间都有一定距离。中心航天器将与每个小卫星保持无线电通信。卫星群和地球之间的所有无线电通信将通过中心航天器以及NASA深空网络进行。 NASA总部太阳物理学部副主任佩格·卢斯(Peg Luce)表示:“HelioSwarm任务的小卫星作为一个航天器集群共同运行的技术创新为研究太阳风湍流及其演化提供了独一无二的能力。” HelioSwarm任务的首席研究员是来自新罕布什尔大学的哈兰·斯彭斯(Harlan Spence)。该任务的预算为2.5亿美元。NASA艾姆斯研究中心(Ames Research Center)负责管理该任务。 太阳物理学探索者计划(Heliophysics Explorers Program)为上述两项任务提供资金并进行项目监督,NASA戈达德太空飞行中心的探索者计划办公室负责项目管理。 有关太阳物理学任务的更多信息,请访问: https://www.nasa.gov/sunearth 参考来源: https://www.nasa.gov/press-release/new-sun-missions-to-help-nasa-better-understand-earth-sun-environment
NASA’s X-59 Quiet SuperSonic Technology aircraft (QueSST) is pictured here at Lockheed Martin Skunk Works in California, wrapped up in preparation for its move to Texas. The X-plane will undergo ground tests to ensure it can withstand the stresses of flight before returning to California for completion. Credits: Lockheed Martin 图为NASA的X-59安静超音速技术飞机(QUSST)在加利福尼亚州洛克希德·马丁臭鼬工厂,正在为飞往德克萨斯做准备。X-plane将接受地面测试,以确保在返回加利福尼亚完成之前能够承受飞行压力。 影像来源:洛克希德·马丁公司 2021 saw significant milestones achieved in the assembly of NASA’s X-59 Quiet SuperSonic Technology aircraft (QueSST), and all eyes now look forward to a pivotal 2022. Following the X-plane’s temporary move from Lockheed Martin’s Skunk Works in California to their facilities in Texas, the X-59 is set to start 2022 with critical ground testing, as progress continues toward NASA’s target of the aircraft’s first flight later this year. 2021年,NASA的X-59静音超音速技术飞机(QUSST)的组装取得了重要的里程碑,现在所有人都期待着关键的2022年。随着X-plane暂时从位于加利福尼亚州的洛克希德·马丁公司臭鼬工厂转移到他们在德克萨斯州的工厂,X-59将在2022年开始进行关键的地面测试,为NASA在今年晚些时候实现飞机首次飞行目标的进展继续。 While in Texas, ground…
左图:位于德克萨斯州圣安东尼奥的KBR设施的低压舱,通过降低舱内的气压来模拟非常高的海拔高度。舱内的实验对象经历了在更高海拔处存在的减压条件,在这种情况下,海拔高达60,000英尺。 右图:一名军事测试志愿者在接受快速减压前,穿着防护装备呼吸氧气。测试的目的是验证他使用和佩戴的设备以及生命支持系统都能正常工作。 影像来源:NASA 对于NASA的静音超音速飞行团队来说,安全是最重要的,他们正在为X-59静音超音速技术(QueSST)飞机未来的飞行测试做准备,并取得了长足的进步。为了给我们的飞行员实现最安全的环境和飞机,NASA正在与承包商KBR合作,并依靠他们的专业知识来确保飞机符合生命支持和紧急氧气系统达到所需的标准。 NASA的X-59是一架研究型飞机,旨在通过其安静的超音速技术和设计特点来消除音爆的轰鸣声。低轰鸣飞行演示任务正在重塑超音速飞行,通过收集社区对X-59飞机飞过头顶时听到的轻微撞击声的反馈,帮助改变现有的航空规则。然后,这些数据将与联邦和国际监管机构共享,使他们能够考虑为陆地上的超音速旅行制定新的准则。为了进入项目的这一阶段,该团队需要确保X-59的生命支持系统能够有效地提供所需的保护,以便能够在满足其任务所需的高海拔地区飞行。 为了确保X-59飞行员的安全,精密的生命支持系统设备正在进行一系列测试,包括模拟不太可能发生的客舱减压。 军事测试志愿者不断受到专家团队的监控,并将其数据显示在监视器上。测试志愿者的生理状况也被跟踪,万一他们的健康需要关注,现场也有专业的医疗人员。 在高达50,000或60,000英尺的空中进行快速减压测试,确保飞行员能够在X-59巡航高度突然失压的情况下生存下来,在高压下向飞行员的肺部提供氧气——为了防止肺部受损,志愿者和飞行员必须穿着反压背心和裤子。这个高度比商业飞机的飞行高度高20,000多英尺。通常情况下,商业飞机的乘客在最多只有8,000英尺的高度上感受压力。作为这项测试的一部分,测试志愿者以预先确定的速度下降到地面。测试小组的持续监测确保了防护设备的正常功能以及志愿者的健康和安全。 主氧气系统的测试现在已经完成,X-59的紧急氧气系统的测试将随后进行。完成后,这些系统将被放置在X-59上,团队将在安装后进行额外的检查。 参考来源: https://www.nasa.gov/aeroresearch/image-feature/a-sneak-peek-into-test-chamber-for-x-59
这副图由美国国家航空航天局(NASA)好奇号(Curiosity)探测器上的桅杆照相机(Mastcam)拍摄于2014年2月9日,也即好奇号任务的第538个火星日。好奇号探测器驶过该沙丘,沙丘位于Dingo Gap 山口。 来源:NASA/加州理工-喷气推进实验室(JPL-Caltech)/马林空间科学系统(MSSS) NASA的一个团队发现火星上可能存在有机盐。这些盐类是有机化合物的化学残留物,就像古代陶器的碎片一样,NASA好奇号探测器之前所探测到的盐类也是如此。火星上的有机化合物和盐类可能是由地质过程形成的,也可能是古代微生物生命的残留物。 在火星上直接探测到有机盐的存在,不仅为火星上曾经存在有机物质的观点增添了更多证据,也对火星目前的可居住性提供支持。因为在地球上,一些生物体可以利用草酸盐和醋酸盐等有机盐类来获取能量。 该研究由来自NASA戈达德太空飞行中心的有机地球化学家詹姆斯·M·T·路易斯(James M. T. Lewis)牵头,研究成果于3月30日发表在《地球物理研究期刊》(Journal of Geophysical Research)上。他表示:“如果我们在火星上的任何地方确定存在有机盐集中分布,我们会想对这些区域进行进一步调查,最好是在地表以下更深处进行钻探,那里的有机物质可以被保存得更好。” 路易斯的实验和对火星样本分析仪数据的分析,都间接表明了火星上有机盐的存在。火星样本分析仪又名“化学和矿物学分析仪”,简称SAM,是好奇号探测器内部的一个便携式化学实验室。但是,使用诸如火星样本分析仪之类的仪器在火星上直接识别有机盐是很困难的,该仪器通过加热火星土壤和岩石以释放出揭示这些样品成分的气体。然而挑战在于,加热有机盐只产生简单的气体,而火星土壤中的其他成分也可能会释放这些气体。 如果你有来自另一个星球的一个样本,而你想知道它是否含有某种特定的分子,甚至可能是一个能够揭示该星球是否能维持生命的分子,你将会怎么做?当科学家们面临这种情况时,他们使用了一个惊人的工具:质谱仪。质谱仪可以使科学家得以非常仔细地对样品进行观测,并确定其中含有的物质。 如果你有一个来自另一个星球的样本,而你想找出它是否含有某种分子……甚至可能是一个能揭示该星球是否能维持生命的分子,你会怎么做?当科学家们面对这样的情况时,他们使用了一个惊人的工具:质谱仪。它可以分离材料,使科学家能够非常仔细地观察一个样本,并看到里面有什么。 影像来源:美国宇航局/戈达德太空飞行中心 然而,路易斯和他的团队提出,好奇号探测器上使用不同技术的另外一个仪器,即化学与矿物学分析仪(CheMin)可以探测到某些有机盐类(如果含量足够丰富)。但到目前为止,化学与矿物学分析仪还没有检测到有机盐类。 寻找有机分子或有机盐的残余物,对NASA寻找其他星球上的生命而言至关重要。但在火星表面,这是一项具有挑战性的任务,因为数十亿年的辐射已经将有机物质抹去或分解。就像考古学家挖掘陶器碎片一样,好奇号探测器收集火星土壤和岩石,其中可能含有微小的有机化合物块,然后由火星样本分析仪和其他仪器鉴定其化学结构。 路易斯和他的团队以及其他科学家们试图通过好奇号探测器传回地球的数据,将这些破碎的有机物碎片拼凑起来。他们的目标是推断出这些碎片曾经可能属于什么类型的大分子,以及这些分子可能揭示出怎样的火星古代环境和潜在的生物学。 路易斯表示:“我们正试图解开数十亿年的有机化学过程,在这一有机记录中,可能包含终极大赏:即表明火星上曾经存在生命的证据。” 虽然一些专家几十年来一直预测火星上保存着古老的有机化合物,但由于好奇号上的火星样本分析仪实验,这一预测才被予以证实。例如,由NASA戈达德太空飞行中心的天体生物学家珍妮弗·艾根布罗德(Jennifer L. Eigenbrode)牵头的好奇号任务科学家国际团队于2018年发布的一份报告中表明检测到了无数含碳分子。正如我们所知,碳是生命的基本元素。 研究科学家詹妮弗·埃杰布洛德博士讨论了火星上发现的古代有机分子。 影像来源:美国宇航局/戈达德太空飞行中心/丹·加拉格尔 艾根布罗德与路易斯合作进行了这项新的研究,她表示:“我们在火星表面发现的30亿年历史的岩石中保存着有机物,这是一个非常有希望的迹象,这表明我们也许能够从火星地表之下保存得更好的样本中获取更多信息。” 几十年前,科学家们预测火星上的有机化合物可能分解成盐。他们认为,这些盐类比大而复杂的分子(例如与生物功能相关的分子)更有可能长期存留在火星表面。 如果火星样本中存在有机盐,路易斯和他的团队想知道在火星样本分析仪的加热炉中加热会如何影响其释放气体的类型。火星样本分析仪的工作原理是将样品加热至超过1800华氏度(1000摄氏度)。热量使分子分解,释放出一些气体。不同的分子在特定的温度下释放出不同的气体。因此,通过观测在哪个温度下释放出哪种气体,科学家们可以推断出样品是由什么成分构成的。 路易斯表示:“当加热火星样本时,矿物质和有机物之间会产生许多相互作用,这可能会使我们的实验更难得出结论,所以我们正在做的工作是试图将这些相互作用进行拆解,以便在科学家们在火星上进行分析时能够利用这些信息。” 路易斯对一系列与惰性硅石粉混合的有机盐进行了分析,以复制火星岩石。他还研究了在硅石混合物中加入高氯酸盐的影响。高氯酸盐是一种含有氯和氧的盐类,在火星上很常见。科学家们长期以来一直担心它们会对寻找有机物质迹象的实验造成干扰。 史上第一张火星照片来自NASA的维京1号(Viking 1)火星探测器,摄于1976年7月20日。 来源:NASA/喷气推进实验室(JPL) 欲了解更多信息,请戳阅:https://www.jpl.nasa.gov/images/first-photograph-taken-on-mars-surface 事实上,研究人员发现高氯酸盐的确对他们的实验产生了干扰,并且准确地指出了是如何干扰的。但他们也发现,与没有高氯酸盐的情况相比,他们从含有高氯酸盐的样本中收集到的结果与火星样本分析仪的数据更加吻合,这支持了火星上存在有机盐的可能性。 此外,路易斯和他的团队的报告表明,有机盐可以被好奇号探测器上的化学与矿物学分析仪检测到。为确定样品的成分,化学与矿物学分析仪向其发射X射线,并测量X射线向检测器衍射的角度。 随着好奇号探测器进入盖尔陨石坑夏普山的新区域,其火星样本分析仪和化学与矿物学分析仪团队将继续搜寻有机盐类的信号。 不久之后,科学家们也将有机会研究火星地表以下保存得更好的土壤。欧洲航天局(ESA)即将推出ExoMars火星漫游车,其装备可以钻探至火星地表之下6.5英尺(约2米)。它将携戈达德仪器,分析火星地表下更深层的化学成分。NASA的毅力号”(Perseverance)火星探测器上没有可以探测有机盐的仪器,但它正在收集样本,以便将来送回地球通过精密的实验室机器来寻找有机化合物。 参考来源: https://www.nasa.gov/feature/goddard/2021/salts-could-be-important-piece-of-martian-organic-puzzle-nasa-scientists-find-0