船帆座脉冲星风星云在NASA IXPE的新图像中飞行

船帆座脉冲星风星云在NASA IXPE的新图像中飞行

大约一万年前,船帆座的一颗巨星爆炸发出的光到达了地球。这颗超新星留下了一个被称为脉冲星的致密物体,它在旋转时似乎有规律地变亮,就像一座宇宙灯塔。从这颗脉冲星的表面,出现了以接近光速传播的粒子风,形成了带电粒子和磁场的混乱大杂烩,并与周围的气体相撞。这种现象被称为脉冲星风星云。 这张照片显示了船帆座脉冲星风星云。浅蓝色代表来自NASA X射线成像偏振探测器的X射线偏振数据。粉色和紫色对应于NASA钱德拉X射线天文台的数据,该天文台此前曾多次观测到船帆座。NASA的哈勃太空望远镜拍摄了背景中的恒星。单击此处查看未标记的图像。 影像来源:X射线: (IXPE) NASA/MSFC/Fei Xie & (Chandra) NASA/CXC/SAO;光学:NASA/STScI Hubble/Chandra;由NASA/CXC/SAO/Kimberly Arcand & Nancy Wolk处理和合成 在这张新图像中,朦胧的浅蓝色光晕对应于船帆座有史以来第一次X射线偏振数据,这些数据来自NASA的X射线成像偏振探测器(IXPE)。一条指向右上角的淡蓝色模糊线对应着一股以大约一半光速的速度从脉冲星中射出的高能粒子流。粉红色的X射线“弧”被认为标记环形区域的边缘,在那里脉冲星风冲击并加速高能粒子。脉冲星本身位于图像中心的白色圆圈处。 粉色和紫色对应于NASA钱德拉X射线天文台的数据,该天文台此前曾多次观测到船帆座。这些金色的星星是由NASA的哈勃太空望远镜拍摄。 偏振测量与电磁波的组织方式有关,它让科学家们对脉冲星这样的宇宙物体如何将粒子加速到高速有了前所未有的了解。 “通过IXPE,我们正在使用像船帆座这样的极端天体作为实验室,来研究天体物理学中一些最紧迫的问题,比如在恒星爆炸后很久粒子如何被突然加速到接近光速的速度。”NASA位于阿拉巴马州亨茨维尔的马歇尔航天飞行中心的高级科学家菲尔·卡里特说。 在最近的一项研究中,科学家们对他们在船帆座脉冲星风星云的X射线中发现的高度偏振感到惊讶。IXPE对该天体的观测结果发表在12月的《自然》杂志上。 “这是迄今为止在天体X射线源中测量到的最高偏振度。”《自然》研究的主要作者、中国广西南宁的广西大学教授、位于罗马的意大利国家天体物理研究所/太空天体物理和行星学研究所(INAF/IAPS)的博士后研究员谢飞说。 来自NASA的X射线成像偏振探测器(IXPE)对船帆座脉冲星风星云的观测图像。这些颜色代表不同的X射线强度,最亮的区域为红色,最暗的区域为蓝色。黑线给出了基于IXPE数据的磁场方向,而银线给出了基于澳大利亚望远镜致密阵列的无线电数据的磁场方向。灰色轮廓显示了来自钱德拉数据的X射线强度。脉冲星位于最亮的X射线发射中心附近。 影像来源:Xie et al, 2022 (Nature) 高极化意味着电磁场组织良好;它们在特定的方向上排列,并取决于它们在星云中的位置。更重要的是,IXPE探测到的X射线来自脉冲星风星云磁场中螺旋运动的高能电子,称为“同步加速辐射”。高度极化的X射线意味着这些磁场也必须组织有序。 参与IXPE数据分析的斯坦福天体物理学家罗杰·W·罗曼尼表示,与周围有一层物质外壳的超新星遗迹不同,X射线的高度偏振“表明电子没有被其他X射线源中似乎很重要的湍流冲击加速”。相反,这肯定有一些其他的过程参与其中,比如磁场重联,它涉及磁力线的断裂和连接。这是磁能转化为粒子能量的一种方式。 IXPE数据还表明,磁场在脉冲星赤道周围排列成光滑的环形结构。这个形状符合科学家的预期。 “IXPE X射线偏振测量为船帆座脉冲星风星云之谜增添了一个缺失的部分。”位于罗马的INAF/IAPS的研究员亚历山德罗·迪马尔科对数据分析做出了贡献,他说道。“通过以前所未有的分辨率绘制地图,IXPE揭示了中心区域的磁场,显示出与从外层星云的无线电图像获得的结果一致。” 船帆座脉冲星距离地球约1,000光年,直径约15英里(25公里),每秒旋转11次,比直升机旋翼还要快。 有关IXPE任务的更多信息 作为NASA小型探险家系列任务系列的一部分,IXPE使用猎鹰9号火箭于2021年12月从NASA位于佛罗里达州的肯尼迪航天中心发射。它现在在地球赤道上方370英里(约595公里)的轨道上运行。这项任务是NASA和意大利航天局的合作项目,合作伙伴和科学合作者来自13个国家。鲍尔航空航天公司以及总部设在科罗拉多州布鲁姆菲尔德管理航天器的运作。 参考来源: https://www.nasa.gov/mission_pages/ixpe/feature/vela-pulsar-wind-nebula-takes-flight-in-new-image-from-nasa-s-ixpe

NASA的钱德拉在碰撞过程中发现了巨大的黑洞

NASA的钱德拉在碰撞过程中发现了巨大的黑洞

正如我们最新的新闻稿中所讨论的那样,使用NASA钱德拉X射线天文台的一项新研究跟踪了矮星系碰撞过程中的两对超大质量黑洞。这是这种即将发生的碰撞的第一个证据,为科学家提供了关于宇宙早期黑洞生长的重要信息。 根据定义,矮星系包含的恒星的总质量小于30亿个太阳,大约是银河系的20倍。天文学家长期以来一直怀疑,矮星系合并,特别是在相对早期的宇宙中,是为了成长为今天所见的更大的星系。然而,目前的技术无法观测到第一代矮星系合并,因为它们在遥远的距离上非常微弱。另一种策略(寻找更近距离的矮星系合并)迄今尚未成功。 这项新研究克服了这些挑战,对钱德拉X射线观测进行了系统的调查,并将其与NASA广域红外线巡天望远镜(WISE)的红外数据和加拿大-法国-夏威夷望远镜(CFHT)的光学数据进行了比较。 钱德拉在这项研究中特别有价值,因为黑洞周围的物质可以被加热到几百万度,产生大量的X射线。该团队在碰撞的矮星系中寻找成对的明亮X射线源作为两个黑洞的证据,并发现了两个例子。 其中一对位于距离地球7.6亿光年的Abell 133星系团中,如左图所示。钱德拉X射线数据为粉红色,CFHT的光学数据为蓝色。这对矮星系似乎处于合并的后期阶段,并显示出由碰撞产生的潮汐效应造成的长尾。这项新研究的作者将其命名为“Mirabilis”,这是一种濒危蜂鸟,以其异常长的尾巴而闻名。之所以只选择了一个名字,是因为两个星系几乎已经合并成一个了。钱德拉的两个来源显示了每个星系黑洞周围物质的X射线。 另一对是在距离我们32亿光年远的Abell 1758S星系团中发现的。来自钱德拉和CFHT的合成图像如右图所示,使用了与Mirabilis相同的颜色。研究人员以马塞尔·普鲁斯特小说《追忆似水年华》(In Search of Lost Time)中的虚构艺术家的名字,给正在合并的矮星系起了个绰号叫“Elstir”和“Vinteuil”。Vinteuil是上面的星系,Elstir是下面的星系。两者都有钱德拉源与之相关,同样来自每个星系中黑洞周围物质的X射线。研究人员认为,这两个星系处于合并的早期阶段,通过引力相互作用,形成了一个由恒星和气体组成的桥梁,将两个碰撞的星系连接起来。 黑洞和矮星系合并的细节可能会让我们了解银河系的过去。科学家们认为,几乎所有的星系都是从矮星系或其他类型的小星系开始,并在数十亿年的时间里通过合并而成长。对这两个系统的后续观测将使天文学家能够研究对了解宇宙早期阶段的星系及其黑洞至关重要的过程。 一篇描述这些结果的论文发表在最新一期的《天体物理学杂志》上,可以在这里获取。这项研究的作者是来自阿拉巴马大学塔斯卡卢萨分校的马尔科·米契奇、奥利维亚·霍尔姆斯、布伦娜·威尔斯和吉米·欧文。 NASA的马歇尔太空飞行中心管理着钱德拉计划。史密森天体物理天文台的钱德拉X射线中心控制着来自马萨诸塞州剑桥的科学操作和来自马萨诸塞州伯灵顿的飞行操作。 图片来源:X射线: NASA/CXC/Univ. of Alabama/M. Micic et al.; 光学:International Gemini Observatory/NOIRLab/NSF/AURA< 如欲了解更多信息,请访问NASA的钱德拉X射线天文台。 有关更多钱德拉图像、多媒体和相关材料,请访问: http://www.nasa.gov/chandra 参考来源: https://www.nasa.gov/mission_pages/chandra/images/nasas-chandra-discovers-giant-black-holes-on-collision-course.html

解开星系团的结

解开星系团的结

天文学家观测到了至少三个星系团之间正在进行的壮观碰撞。来自NASA的钱德拉X射线天文台、ESA(欧洲航天局)的XMM-Newton和三架射电望远镜的数据正在帮助天文学家理清这一混乱场景中发生的事情。像这样的碰撞和合并是星系团成长为今天看到的巨大宇宙大厦的主要方式。这些也是宇宙中最大的粒子加速器。

为恒星爆炸设置时钟

为恒星爆炸设置时钟

影像来源:X射线:NASA/CXC/GSFC/B. J. Williams et al.;可见光:NASA/ESA/STScI 虽然天文学家已经看到了银河系和附近星系中数十颗爆炸恒星的碎片,但通常很难确定恒星消亡的时间线。通过使用NASA望远镜研究邻近星系中壮观的超新星遗迹,一组天文学家已经找到了足够的线索来帮助时光倒流。 超新星遗迹SNR 0519-69.0(简称SNR 059)是白矮星爆炸产生的碎片。在达到临界质量后,无论是从伴星中吸取物质还是与另一颗白矮星合并,恒星都经历了热核爆炸并被摧毁。科学家们将这种被称为Ia型的超新星用于广泛的科学研究,从热核爆炸研究到测量数十亿光年的星系距离。 SNR 0519位于大麦哲伦星云中,这是一个距离地球160,000光年的小星系。这张合成图像显示了来自NASA钱德拉X射线天文台的X射线数据和来自NASA哈勃太空望远镜的光学数据。来自SNR 0519的低、中、高能量X射线分别显示为绿色、蓝色和紫色,其中一些颜色重叠显示为白色。光学数据用红色显示了遗迹的边界,用白色显示了遗迹周围的恒星。 天文学家将钱德拉和哈勃的数据与NASA退役的斯皮策太空望远镜的数据相结合,以确定SNR 0519中的恒星爆炸的时间,并了解超新星发生的环境。这些数据为科学家们提供了一个机会,让他们“倒带”观看恒星进化的电影,并弄清楚恒星爆炸是从何时开始。 研究人员比较了2010年、2011年和2020年的哈勃图像,以测量爆炸冲击波中物质的速度,爆炸冲击波的速度约为每小时380万至550万英里(900万公里)。如果速度接近这些估计速度的上限,天文学家确定,爆炸产生的光应该在大约670年前抵达地球,即英法百年战争和中国明朝鼎盛时期。 然而,很可能自最初爆炸以来,爆炸冲击波中物质的速度已经放缓,而且爆炸发生的时间比670年前更近。钱德拉和斯皮策的数据提供了这种情况的线索。天文学家发现,残骸的X射线中最亮的区域是移动最慢的物质所在的位置,而X射线发射与移动最快的物质无关。 这些结果表明,一些冲击波已经撞击到残余物周围的稠密气体中,导致它在行进时减速。天文学家可以利用哈勃望远镜的额外观测来更精确地确定恒星的消亡时间。 描述这些结果的论文发表在《天体物理学杂志》8月刊上,预印本可在此处获得。这篇论文的作者是布赖恩·威廉姆斯(位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心);帕尔维兹·加瓦米安(马里兰州陶森市陶森大学);伊沃·塞滕扎尔(新南威尔士大学,澳大利亚国防军学院,澳大利亚堪培拉);斯蒂芬·雷诺兹(北卡罗来纳州立大学,北卡罗来纳州罗利);卡齐米日·博尔科夫斯基(北卡罗来纳州罗利市北卡罗来纳州立大学)和罗伯特·彼得(GSFC)。NASA的马歇尔太空飞行中心管理钱德拉计划。史密森天体物理观测站的钱德拉X射线中心控制着马萨诸塞州剑桥市的飞行操作和马萨诸塞州伯灵顿市的飞行操作。 参考来源: https://www.nasa.gov/mission_pages/chandra/images/setting-the-clock-on-a-stellar-explosion.html

天市右垣十一(蛇夫座ζ):一颗有着复杂过去的恒星

天市右垣十一(蛇夫座ζ):一颗有着复杂过去的恒星

Zeta Ophiuchi is a star with a complicated past, having likely been ejected from its birthplace by a powerful stellar explosion. A new look by NASA’s Chandra X-ray Observatory helps tell more of the story of this runaway star. Located about 440 light-years from Earth, Zeta Ophiuchi is a hot star that is 20 times more massive than the Sun. Previous observations have provided evidence that Zeta Ophiuchi was once in close orbit with another star, before being ejected at about 100,000 miles per hour when this companion was destroyed in a supernova explosion over a million years ago. Previously released infrared data from NASA’s now-retired Spitzer Space Telescope, seen in this new composite image, reveals a spectacular shock wave (red and green) that was…

钱德拉显示巨型黑洞比同类黑洞自转得慢

钱德拉显示巨型黑洞比同类黑洞自转得慢

H1821+643是一个由超大质量黑洞驱动的类星体,距离地球约34亿光年。天文学家使用美国宇航局的钱德拉X射线天文台确定了H1821+643黑洞的自转,使其成为对这一基本性质进行精确测量的质量最大的黑洞,如我们在新闻稿中所述。天文学家估计,位于H1821+643的活跃黑洞包含约30亿至300亿太阳质量,是已知质量最大的黑洞之一。相比之下,银河系中心的超大质量黑洞重约400万个太阳。 这张H1821+643的合成图像包含来自钱德拉的X射线(蓝色),它与来自美国国家科学基金会卡尔·G·扬斯基甚大阵列(红色)的无线电数据和来自夏威夷泛星计划的光学图像(白色和黄色)相结合。研究人员使用了20多年前钱德拉近一周的观测时间来获得这一最新结果。超大质量黑洞位于射电和X射线发射中心的亮点中。 由于自转黑洞拖动周围的空间,使物质的轨道比非自转黑洞更靠近黑洞,因此X射线数据可以显示黑洞自转的速度。H1821+643的光谱(即能量量作为波长的函数)表明,与其他质量较小、转速接近光速的黑洞相比,这个黑洞的自转速度适中。这是对如此大质量黑洞的最精确的自转测量。 为什么H1821+432中的黑洞的自转速度只有低质量黑洞的一半左右?答案可能在于这些超大质量黑洞是如何生长和演化。这种相对缓慢的自转支持了这样一种观点,即像H1821+643这样最大质量黑洞的大部分增长都是通过与其他黑洞合并,或者当它们的吸积盘被破坏时,气体被随机拉向内部。 以这些方式生长的超大质量黑洞可能经常会发生巨大的自转变化,包括减速或向相反方向扭曲。因此,预测认为,应该观察到质量最大的黑洞比其质量较小的同类黑洞具有更大的自转速率范围。 另一方面,科学家们预计质量较小的黑洞会从围绕其旋转的气体盘中积累大部分质量。因为这样的气体盘被认为是稳定的,所以进入的物质总是从一个使黑洞旋转得更快的方向靠近,直到它们达到可能的最大速度,即光速。 描述这些结果的论文发表在《皇家天文学会月报》上,可在https://arxiv.org/abs/2205.12974获得。作者是英国剑桥大学天文研究所的朱莉娅·西斯克·雷恩斯、克里斯托弗·雷诺兹、詹姆斯·马修斯和罗宾·史密斯。 NASA的马歇尔太空飞行中心负责管理钱德拉计划。史密森尼天体物理天文台的钱德拉X射线中心控制着来自马萨诸塞州剑桥的科学操作和来自马萨诸塞州伯灵顿的飞行操作。 图片来源:X射线:NASA/CXC/University of Cambridge/J.Sisk Reynés等人;射线:NSF/NRAO/VLA;光学:PanSTARRS 请阅读美国宇航局钱德拉X射线天文台的更多信息。 有关更多钱德拉图像、多媒体和相关材料,请访问: http://www.nasa.gov/chandra 参考来源: https://www.nasa.gov/mission_pages/chandra/images/chandra-shows-giant-black-hole-spins-slower-than-its-peers.html

黑洞吞噬数千颗恒星以促进增长

黑洞吞噬数千颗恒星以促进增长

NASA钱德拉X射线天文台对100多个星系进行的一项新调查发现,有迹象表明,黑洞正在吞噬数千颗恒星,以增加其质量。图中所示的4个星系是样本中29个星系中的4个,这些星系显示了黑洞在其中心附近不断生长的证据。来自钱德拉(蓝色)的X射线被叠加在NASA哈勃太空望远镜拍摄的NGC 1385、NGC 1566、NGC 3344和NGC 6503的光学图像上。翻转图中出现的方框勾勒出正在萌芽的黑洞的位置。 这些新的结果表明,至少其中一些黑洞要达到现在的大小,经历了某种程度上暴力的方式——恒星毁灭的规模是前所未见。 天文学家对两类不同的黑洞进行了详细的研究。较小的种类是“恒星质量”黑洞,其质量通常为太阳质量的5到30倍。在光谱的另一端是生活在大多数大星系中间的超大质量黑洞,其质量达几百万甚至几十亿个太阳质量。近年来,也有证据表明存在一种称为“中等质量黑洞”(IMBHs)的中间类。钱德拉的新研究可以解释这种IMBH是如何通过恒星质量黑洞的失控增长而产生。 制造IMBH的一个关键可能是他们的环境。这项最新的研究着眼于星系中心非常密集的星团。由于恒星距离如此之近,许多恒星将在星团中心黑洞的引力作用下通过。该团队的理论工作表明,如果星团中恒星的密度(堆积在给定体积中的数量)高于阈值,则星团中心的恒星质量黑洞将在吸入、撕碎和吞食附近丰富的相邻恒星时经历快速增长。 在钱德拉新研究的星团中,密度高于这个阈值的星团的黑洞数量大约是密度低于这个阈值的星团的两倍。密度阈值还取决于星团中恒星的移动速度。 钱德拉的最新研究表明,这个过程可以在宇宙历史上的任何时候发生,这意味着中质量黑洞可以在大爆炸后数十亿年后形成,直到今天。 一篇描述这些结果的论文被录用并发表在《天体物理学杂志》上。它也可以在线获取。这项研究的作者是Vivienne Baldassare(华盛顿州立大学)、Nicolas C.Stone(以色列耶路撒冷希伯来大学)、Adi Foord(斯坦福大学)、Elena Gallo(密歇根大学)和Jeremiah Ostriker(普林斯顿大学)。 NASA的马歇尔太空飞行中心管理钱德拉计划。史密森尼天体物理天文台的钱德拉X射线中心控制着来自马萨诸塞州剑桥的科学操作和来自马萨诸塞州伯灵顿的飞行操作 图片来源:X射线:NASA/CXC/Washington State Univ./V. Baldassare et al.;光学:NASA/ESA/STScI 请阅读NASA钱德拉X射线天文台的更多信息。 如欲了解更多钱德拉图片、多媒体和相关资料,请访问: http://www.nasa.gov/chandra 参考来源: https://www.nasa.gov/mission_pages/chandra/images/black-holes-raze-thousands-of-stars-to-fuel-growth.html