异常信号暗示黑洞摧毁了中子星

异常信号暗示黑洞摧毁了中子星

2019 September 3 Unusual Signal Suggests Neutron Star Destroyed by Black Hole Illustration Video Credit: NASA, Dana Berry (Skyworks Digital) Explanation: What created this unusual explosion? Three weeks ago, gravitational wave detectors in the USA and Europe — the LIGO and Virgo detectors — detected a burst of gravitational radiation that had the oscillating pattern expected when a black hole destroys a neutron star. One object in event S190814bv was best fit with a mass greater than five times the mass of the Sun — making it a good candidate for a black hole, while the other object appeared to have a mass less than three times the mass of the Sun — making it a good candidate for a neutron star. No similar event…

动画:黑洞周围的旋涡状吸积盘

动画:黑洞周围的旋涡状吸积盘

2019 August 20 Animation: Spiral Disk around a Black Hole Illustrated Animation Credit: ESA, NASA, Hubble, M. Kornmesser Explanation: What would it look like to orbit a black hole? Many black holes are surrounded by swirling pools of gas known as accretion disks. These disks can be extremely hot, and much of the orbiting gas will eventually fall through the black hole’s event horizon — where it will never been seen again. The featured animation is an artist’s rendering of the curious disk spiraling around the supermassive black hole at the center of spiral galaxy NGC 3147. Gas at the inner edge of this disk is so close to the black hole that it moves unusually fast — at 10 percent of the speed of…

钱德拉发现最遥远的黑洞

钱德拉发现最遥远的黑洞

NASA钱德拉X射线天文台的数据揭示最遥远的黑洞。 Credits: X-ray: NASA/CXO/Pontificia Universidad Catolica de Chile/F. Vito; Radio: ALMA (ESO/NAOJ/NRAO); optical: Pan-STARRS 天文学家利用钱德拉X射线天文台发现了一个早期宇宙的黑洞,它被大量气体掩盖,是迄今为止发现的最远的黑洞。这个黑洞存在于大爆炸后8亿年(当今宇宙年龄为138亿年),这是人们发现的第一个迹象,证明宇宙历史早期存在这样的黑洞。 超大质量黑洞的质量是太阳的数百万到数十亿倍,通常通过从周围物质盘中吸取物质来增长。快速的增长会导致黑洞周围一小片区域内产生大量辐射。科学家将这种非常明亮、紧凑的光源称为“类星体(quasar)”。 根据目前的理论,在黑洞的早期成长阶段,一团密集的气体将物质输送到黑洞周围的圆盘中,将类星体大部分的明亮光线从我们的视野中隐藏起来。随着黑洞快速消耗物质并变得更加庞大,气体云被逐渐耗尽,我们就能观测到黑洞周围明亮吸积盘了。 “在这种‘隐形阶段’找到类星体是极具挑战性的,因为它们的大部分辐射都被吸收,目前的仪器无法检测到,”来自智利天主教大学(位于智利圣地亚哥)的研究员Fabio Vito说道,“多亏了钱德拉和X射线穿透气体云的能力,我们终于做到了。” 这一新发现来自对类星体PSO167-13的观测,最初由夏威夷的光学望远镜Pan-STARRS发现。光学望远镜的观测发现,当宇宙年龄不到10亿年时,大约有200个类星体已经很明亮了。这些望远镜只能有效地发现无遮掩的黑洞,因为薄薄的气体和尘埃云就可以削弱仪器检测到的辐射。由于PSO167-13是这些观测之一,天文学家预计它未被遮挡。 [rml_read_more] Vito的团队通过使用Chandra观测PSO167-13以及其他九个类星体来测试这个想法。经过16个小时的观测后,仅从PSO167-13中检测到三个X射线光子,均具有相对较高的能量。由于低能X射线比高能X射线更容易被吸收,可能的解释是,类星体被气体高度遮挡,因此我们只能检测到高能X射线。 来自宾夕法尼亚州立大学、该文论的共同作者Niel Brandt说:“这完全是一个惊喜,就像我们期待一只飞蛾,却找到了一个茧。正如预期,我们观测到的其他9个类星体都未被遮挡。” 关于PSO167-13的一个有趣的转折是,它所在的星系有一个紧密的伴星系(companion galaxy),之前被智利的阿塔卡马大型毫米波阵列(Atacama Large Millimeter Array,ALMA)和哈勃太空望远镜所观测到。由于它们距离太近,而且X射线源又很微弱,该团队无法确定新发现的X射线是来自类星体PSO167-13还是边上的伴星系。 如果X射线来类星体,那么天文学家需要解释为什么类星体在X射线中看起来非常隐晦,而在可见光下则不然。一种可能性是,在进行光学和X射线观测所间隔的三年中,类星体被遮蔽的程度大幅度并快速增加。 另一方面,如果X射线来自伴星系,那么说明我们在PSO167-13附近探测到了一个新的类星体。这将是我们迄今为止发现的最遥远的类星体对(quasar pair)。 无论是哪种情况,钱德拉探测到的类星体来自大爆炸后8亿年,将是人们看到的最远的类星体。在此之前,最早的记录是13亿年。 研究团队计划跟进更多观测以了解更多信息。 来自智利天主教大学、千禧天体物理学研究所(Millennium Institute of Astrophysics,MAS)的成员、论文共同作者Franz Bauer表示,“通过更长时间的钱德拉观测,我们将能够更好地估计黑洞被遮蔽的程度,并且识别出X射线源究竟是来自类星体还是伴星系。” 研究团队还计划寻找更多高度隐蔽的黑洞。 “我们怀疑早期宇宙中的大多数超大质量黑洞是高度隐蔽的:所以探测并研究它们、了解它们如何能够如此迅速地增长到十亿个太阳质量,是至关重要的,”来自意大利国家天文物理研究所(INAF,位于意大利博洛尼亚)、共同作者Roberto Gilli说。 研究结果的论文发表在《天文与天体物理学报(Astronomy and Astrophysics)》,可在线获取。NASA马歇尔太空飞行中心负责管理钱德拉计划。史密森天体物理天文台的钱德拉X射线中心(位于马萨诸塞州剑桥)控制科学和飞行操作。 有关更多钱德拉的图像、多媒体和相关材料,请访问:http://www.nasa.gov/chandra

哈勃发现不该存在的黑洞

哈勃发现不该存在的黑洞

好像黑洞还不够神秘似的,最近天文学家使用NASA的哈勃太空望远镜发现了一个让人意想不到的黑洞。在距离我们1.3亿光年远的螺旋星系(spiral galaxy)NGC 3147,有一个吸积盘(accretion disk)在绕着中心的超大质量黑洞旋转,然而这个材料盘出乎意料的薄。 谜团在于,根据当前的天文学理论,这个薄盘不应该存在。然而,如此接近黑洞的吸积盘的意外存在为测试爱因斯坦的相对论(theory of relativity)提供了一个独特的机会。广义相对论(general relativity)将重力描述为空间曲率,狭义相对论(special relativity)则描述时空关系。 左图是旋涡星系NGC 3147的哈勃图像,右图是该星系中心超大质量黑洞的概念图。哈勃图像显示了星系的旋臂(spiral arm)、蓝色的年轻恒星、粉红色的星云、和轮廓上的灰尘。实际上,在这个漩涡星系中心潜伏着一个巨大的黑洞,质量约为2.5亿太阳质量。哈勃对黑洞的观测展示了爱因斯坦的两个相对论。在中心周围旋转的红/黄色部分是被黑洞引力捕获的气体所发出的光。绿色网格显示黑洞嵌入其引力场深处,说明了弯曲的空间。引力场是如此强大以至于光都要努力逃出来,这是爱因斯坦广义相对论中描述的一个原理。物质在黑洞周围快速旋转,使得吸积盘向我们运动的那一侧会变亮,而另一侧因为远离地球而变暗。爱因斯坦的狭义相对论预测了这种称为相对论性射束(relativistic beaming)的效应。NGC 3147位于距离我们1.3亿光年外的北拱极星座(northern circumpolar constellation)天龙座(Draco)。 Credits: Hubble Image: NASA, ESA, S. Bianchi (Università degli Studi Roma Tre University), A. Laor (Technion-Israel Institute of Technology), and M. Chiaberge (ESA, STScI, and JHU); illustration: NASA, ESA, and A. Feild and L. Hustak (STScI) “我们从未在可见光下如此清楚地同时看到广义相对论和狭义相对论的作用,”来自欧洲空间局、太空望远镜科学研究所(STScI)和约翰霍普金斯大学(都位于马里兰州巴尔的摩)、哈勃研究的团队成员Marco Chiaberge说道。 该研究的第一作者,罗马第三大学(Università degli Studi Roma Tre,位于意大利罗马)的Stefano Bianchi补充说,“这是一个非常接近黑洞的吸积盘,近到以至于速度和引力的强度开始影响光子。除非我们考虑相对论,否则无法解释这些数据。” 像NGC 3147这种星系,因为没有足够的重力来捕获物质从而定期喂食黑洞,黑洞会“营养不良”。因此,薄薄的一层材料会像甜甜圈一样膨胀,而不是形成薄饼状的盘。这就非常令人费解了:为什么NGC 3147中这个“挨饿”的黑洞会有如此薄的吸积盘,跟其他极其活跃的星系中发现的很像,而这些星系往往都有着正在“狼吞虎咽”的巨大黑洞。 [rml_read_more] 来自以色列理工学院(位于以色列海法)的Ari Laor解释道,“我们以为这是个最好的证据,能确认在一定光度(luminosity)以下,吸积盘不再存在。实际观测的却完全出乎意料。我们发现气体运动的特征,这些现象的唯一解释是,它们是由非常靠近黑洞的物质薄盘产生的。 天文学家最初选择这个星系的目的,是来验证关于低光度活动星系(即包含“节食”的黑洞)的模型。模型预测,当黑洞强大的引力可以束缚大量气体时,会形成吸积盘。这些落入黑洞的物质会发出大量的光,最强大的黑洞会产生称为类星体(quasar)的超亮天体。一旦只有少量材料落入黑洞,吸积盘就会开始分解,变得更暗,结构也会随之改变。 “我们看到的吸积盘是我们原本预计不存在的小型类星体,”Bianchi说,“对于相同类型的吸积盘,发光量应该是它的1000甚至100000倍。显然,对于活动非常微弱的星系,目前的气体动力学模型预测都失败了。” 根据爱因斯坦的相对论,吸积盘深深嵌入黑洞强烈的引力场中,导致来自气盘的光受影响,这个现象使天文学家能够独特地观察黑洞附近的动态过程。 哈勃记录了物质在黑洞周围旋转的速度,超过0.1光速。在这些极限速度下,气体在向地球运动的那一侧会变亮,而在另一侧远离地球时会变暗(relativistic beaming)。哈勃望远镜的观测还表明,气体被牢牢地困在重力井(gravitational well)中,光都在努力爬出来,因此看起来光被拉伸到更红的波长。 研究人员使用哈勃太空望远镜成像光谱仪(STIS)来观察在盘内深处旋转的物质。光谱仪(spectrograph)是一种诊断工具,它将来自物体的光分成多个单独的波长,以非常高的精度确定其速度、温度、和其他特性。天文学家需要STIS清晰的分辨率来分离出来自黑洞区域的微弱光线并阻挡星光的污染。 “如果没有哈勃望远镜,我们就无法得到这个结果,因为黑洞区域的光度很低,”Chiaberge说道,“星系中恒星的光度比核心的任何物体都要亮。如果从地面观察它,我们就会被恒星的亮度完全支配,这会淹没黑洞微弱的光。” 该团队希望能利用哈勃望远镜寻找类似活跃星系中“不太行”的黑洞,更深入研究这些黑洞周围非常紧凑的吸积盘。他们的论文于7月11日发表在《皇家天文学会月刊》(Monthly Notices of the Royal Astronomical Society)上。 参考: https://www.nasa.gov/feature/goddard/2019/hubble-uncovers-black-hole-that-shouldnt-exist/

引力透镜发现最快自旋黑洞

引力透镜发现最快自旋黑洞

通过引力透镜(gravitational lensing),来自每个类星体(quasars)的光的产生了多个它的图像。 Image credit: NASA/CXC/Univ. of Oklahoma/X. Dai et al. 就像海洋中的漩涡一样,宇宙中旋转的黑洞在它们周围形成一波“洪流”。不同的是,黑洞将产生的气体尘埃盘加热到数亿度而发出高能X射线。 利用NASA钱德拉X射线天文台(Chandra X-ray Observatory)的数据和一些星系的位置巧合,天文学家采用“引力透镜”来测量五个超大质量黑洞(supermassive black holes)的自旋(spin)。其中一个黑洞周围物质的旋转速度大于光速的70%左右。 引力透镜是一种自然现象。正如爱因斯坦所预测的那样,大质量物体(比如大星系)会使周围的时空弯曲,当它正好在我们与观测目标之间时,它强大的引力会弯曲来自目标的光,从而放大并产生多个目标的图像。 在这项新研究中,天文学家使用钱德拉和引力透镜来研究六个类星体,每个类星体都有一个超大质量黑洞在快速“吞噬”周围吸积盘(accretion disk)中的物质。通过这些“介入”的透镜星系,来自每个类星体的光都通过引力透镜产生了多个图像。多亏了钱德拉卓越的成像能力,这些透镜图像得以分离。 研究人员在这项研究中取得的关键进展是他们利用了“微透镜(microlensing)”:透镜星系中的各个恒星提供了额外的放大效果。更高的放大率意味着产生X射线的区域实际上更小。 比起不旋转的黑洞,旋转的黑洞在其周围拖动空间,使物质绕黑洞的轨道更小。利用这个特性,作者从他们的微透镜分析中得出结论:紧密的轨道对应较小的X射线发射区域,这些黑洞自转更快。 结果显示,有一个被称为“爱因斯坦十字(Einstein Cross)”的类星体,其中的黑洞正以可能的最大速率旋转。这个极限对应的事件视界(event horizon),即黑洞的“不归点”,以光速旋转,大约每小时十的十二次方米。观测目标中的另外四个黑洞平均转速大约是最大速率的一半,最后一个目标没有转速估计。 “爱因斯坦十字”的X射线来自吸积盘的一部分,面积不到事件视界的2.5倍。而对于其他四个类星体,X射线来自事件视界四到五倍大小的区域。 这些黑洞为什么转的这么快呢?研究人员认为,数十亿年来,这些超大质量黑洞很可能是从旋转方向相似的吸积盘上积累物质,而不是随机方向。就像推旋转木马一样,黑洞在吸积物质的过程中不断加快速度。 钱德拉检测到的X射线产生于吸积盘上数百万度的日冕(corona),这些X射线在吸积盘的内边缘反射,黑洞附近的强重力使反射的X射线光谱(X-ray spectrum,即不同能量X射线的分布)变形。在这项研究中,X射线光谱中看到的大量扭曲意味着盘内边缘必须靠近黑洞,这进一步证明它们必须快速旋转。 所观测的类星体距地球约88亿至109亿光年,黑洞的质量有太阳的1.6亿到5亿倍。这次结果是钱德拉用引力透镜对类星体进行过的最长观测,总曝光时间在1.7到5.4天之间。研究成果发表于7月2日的《天体物理学杂志》上,可在线获取。 有关更多钱德拉的图像、多媒体和相关材料, 请访问:http://www.nasa.gov/chandra 参考: https://www.nasa.gov/mission_pages/chandra/images/x-rays-spot-spinning-black-holes-across-cosmic-sea.html

宇宙风暴中的茶杯座星系

宇宙风暴中的茶杯座星系

想喝杯宇宙茶吗?这一次不像地球上的那样平静,在一个拥有绰号为“茶杯”结构的星系中,一场星系风暴正在肆虐。 宇宙风暴来源是一个深埋在星系中心的超大质量黑洞,官方名称为SDSS 1430+1339。当星系中心区域的物质被拉向黑洞时被黑洞附近的强引力和磁场所激发。正在下落的物质产生辐射比宿主星系中的所有恒星都要多,这被称为类星体。 茶杯座所在的星系距离地球约11亿光年,2007年市民科学家利用斯隆数字天空调查(Sloan Digital Sky Survey)数据:在Galaxy Zoo项目的可见光图像中首次发现了茶杯座星系。 Fancy a cup of cosmic tea? This one isn’t as calming as the ones on Earth. In a galaxy hosting a structure nicknamed the “Teacup,” a galactic storm is raging. The source of the cosmic squall is a supermassive black hole buried at the center of the galaxy, officially known as SDSS 1430+1339. As matter in the central regions of the galaxy is pulled toward the black hole, it is energized by the strong gravity and magnetic fields near the black hole. The infalling material produces more radiation than all the stars in the host galaxy. This kind of actively growing black hole is known as a quasar. Located about 1.1 billion light years from Earth, the…

银心黑洞为什么不活跃?

银心黑洞为什么不活跃?

大多数星系中心都有个超大质量黑洞,我们的银河系也不例外。许多其他星系的黑洞都很活跃,在大量物质落入的过程中发出高能辐射,然而银河系的黑洞却相对安静。最新的观测结果,来自NASA同温层红外线天文台SOFIA,正在帮助科学家们了解活跃和安静黑洞之间的差异。 科学家使用了SOFIA的最新仪器高分辨率机载宽带相机(High-resolution Airborne Wideband Camera-Plus, 简称HAWC+)进行观测,结果带来了关于银心强磁场前所未有的信息。 磁场(magnetic fields)是影响带电粒子路径的不可见力,对整个宇宙中物质的运动和演化有重大影响。但由于磁场不能直接成像,它们的作用尚不清楚。HAWC+检测到尘埃粒子(dust grains)发出的偏振远红外线(polarized far-infrared light,人眼看不见),这些粒子垂直于磁场排列。根据SOFIA的结果,天文学家可以绘制出磁场的形状并推断出其强度,有助于可视化这种宇宙基本力(fundamental force)。 流线表示磁场,叠加在银河系巨大黑洞周围尘埃环的彩色图像上。Y形结构表示的是落向黑洞的物质,而黑洞位于Y形两臂相交的位置附近。流线表明磁场紧密地遵循尘埃结构的形状。每个蓝色臂都有自己的场,与环的其余部分(粉色)完全不同。 Credits: Dust and magnetic fields: NASA/SOFIA; Star field image: NASA/Hubble Space Telescope [rml_read_more] “我们真正能够看到磁场和星际物质(interstellar matter)间的相互作用,这是第一个这样的实例之一,”来自NASA艾姆斯研究中心的大学空间研究中心(位于加州硅谷)的天体物理学家、论文合著者Joan Schmelz说道,“HAWC+是个改变格局的技术。” SOFIA之前的观测就有显示,在银心黑洞(称为人马座A*,Sagittarius A*)的轨道上有倾斜的气体和尘埃环。新的HAWC+数据提供了该区域磁场的独特视图,似乎可追溯到10万年以前。SOFIA磁场观测的详细信息在2019年6月的美国天文学会会议上公布,并将提交《天体物理学杂志》。 黑洞的引力主导着银河系的动力学,但磁场的作用一直是个谜。新观测表明,磁场的强度足以约束气体湍流的运动。如果磁场引导气体流入黑洞,黑洞则活跃,因为它正在“吞食”大量气体;如果磁场引导气体流入围绕黑洞的轨道,黑洞将是安静的,而这些“幸存”的气体会成为恒星的原材料。 研究人员将SOFIA像机拍摄的中/远红外图像与新的流线相结合,以显示磁场方向。叠加的图像显示磁场遵循尘埃结构的形状,但也有一些地方的场远离主要的灰尘结构,比如环顶部和底部的端点。 “磁场的螺旋将气体引导到黑洞周围的轨道上,”NASA喷气推进实验室科学家、HAWC+仪器的首席研究员、该研究的主要作者Darren Dowell说,“这可以解释为什么我们的黑洞很安静,而其他黑洞很活跃。” 物质在超大质量黑洞的极端环境中是如何与其相互作用的?为什么银河系中心的黑洞相对微弱,而其他星系中的黑洞却很明亮?新的SOFIA和HAWC+观测将有助于了解并解决这些长期困扰科学家的问题。 原文 https://www.nasa.gov/feature/magnetic-field-may-be-keeping-milky-way-s-black-hole-quiet

雅典娜和LISA将为我们揭晓:两个超大两黑洞相撞时,会发生什么?

雅典娜和LISA将为我们揭晓:两个超大两黑洞相撞时,会发生什么?

合并后的黑洞 版权:ESA 当两个超大质量黑洞(supermassive black hole)相撞时,会发生什么?在不久的未来,结合欧洲空间局(European Space Agency,ESA)两个任务的观测,雅典娜(Athena)和空间激光干涉仪(LISA),这一谜题就会揭晓,我们将能深入研究这样的宇宙级冲突以及其神秘莫测的后续故事。 这种黑洞之所以被称为“超大质量黑洞”,是因为它们的质量为太阳的数百万到数十亿倍,所处的位置也是宇宙中质量总和最大的那些星系中心。至今,我们都没弄清楚这些体型和密度都巨大无比的物质是如何形成的,也不知道是什么力量让其中的小小的一部分,以极高的速率吞噬周围的物质,在电磁波谱中产生大量的辐射,并将所在的宿主星系变成“活跃的星系核(galactic nucleus)”。 解决现代天体物理学中的这些开放性问题,是ESA空间科学计划未来两项任务的主要目标之一,这两项任务分别是高能天体物理高级望远镜“雅典娜”(Advanced Telescope for High-ENergy Astrophysics,Athena)和空间激光干涉仪(Laser Interferometer Space Antenna ,LISA)。 两项任务目前均处于研究阶段,计划于2030年代初期启动。 ESA的科学主任金特•哈辛格(Günther Hasinger)表示:“雅典娜和LISA都会是出类拔萃的科学任务,将在天体物理学的许多领域取得突破。”他解释说:“但是有一个尤其激动人心的实验,只能在两个任务同时运作,并运作的时间至少好几年时才能完成:通过在X射线和引力波中观察超大质量黑洞的合并,为宏大的‘宇宙电影’完成配音。” 金特对这两项任务非常看好:“凭借这一独特的机会,我们将对宇宙最迷人的现象之一进行前无古人的观察,雅典娜与LISA之间的协同合作,将大大提高两个任务的科学回报,确保欧洲在一个至关重要而新奇的研究领域的领导地位。” [rml_read_more] 探索极致宇宙的两项任务 版权:ESA – S. Poletti 雅典娜将成为有史以来最大的X射线天文台,以前所未有的准确性和纵深性,研究宇宙中一些温度最高、能量最为活跃的现象。 雅典娜任务的目的是为了回答两个基本问题:星系中心的超大质量黑洞是如何形成以及演化的;可见的“普通”物质如何与隐形的暗物质合纵连横,形成弥漫在整个宇宙中的纤细“宇宙网”的。 “雅典娜测量的黑洞数目将高达数十万个,涉及的范围从相对较近的地方到遥远的宇宙深处,对这些黑洞周围环境中温度高达数百万度的热物质发射的X射线进行观测。”ESA的雅典娜研究科学家马泰奥•伊瓜纳齐(Matteo Guainazzi)说道,“我们对那些最遥远的黑洞尤其感兴趣,它们诞生于宇宙形成的最初几亿年里,我们希望最终能明白它们究竟是如何形成的。” 与此同时,LISA则将成为第一个引力波(gravitational wave)空间观测站。引力波是指时空结构的弯曲波动,由重力场极强的宇宙物质加速运动产生,以波的形式向外传播。而一对正在合并的黑洞,就满足产生引力波的条件。 引力波天文学的兴起只有5年左右的时间,目前的探测仅限于高频波,探测器也限制在地面上,例如美国国家科学基金会(National Science Foundation,United States)的激光干涉引力波天文台(Laser Interferometer Gravitational-wave Observatory,LIGO)和欧洲位于意大利的“室女座”干涉仪(Virgo interferometer)。这些实验能较为精确地探测到小型黑洞的合并,它们的质量大约为太阳质量的几倍到几十倍。 一对正在合并的超大质量黑洞 版权:ESA LISA将会对低频引力波进行探测,让现有的这些研究得到进一步扩展,例如在星系合并时,探测两个超大质量黑洞碰撞产生的引力波。 “LISA将会是此类任务的先行者,主要探寻的就是超大质量黑洞相撞所引发的引力波。”ESA LISA研究项目的科学家保罗•麦克纳马拉(Paul McNamara)解释说,“这是人类所知能量规模最大的事件之一,黑洞相撞释放的能量将超过任意时间下所有静止的宇宙能量。在宇宙任何地方,如果有两个超大质量黑洞合并了,LISA就能观测到这一壮观的事件。” LIGO和Vigro在2015年到2017年之间探测到了第一批引力波事件,均源于恒星级质量黑洞(stellar-mass black hole);而后,在2017年的八月,另一种来源的引力波也得到了探测,那也是人类第一次直接探测到来自双中子星合并的引力波。 相比恒星级黑洞合并不会辐射出任何形式的光,双中子星合并产生的引力波则伴随了电磁波谱的辐射,很容易通过大量的地球望远镜和空间望远镜观测到。用多信使天文学(multi-messenger astronomy)的方法,将各种类型的观测资料结合起来,科学家就能深入研究这种从未被探测过的现象。 雅典娜和LISA的强强联合,会使我们能够首次将多信使天文学应用在超大质量黑洞上。现有的模拟预测:不同于恒星级黑洞,超大质量黑洞的合并将同时发射出引力波和辐射射线。在相撞之时,两个星系的高温星际气体被相遇的两个黑洞搅动,从而引发了辐射的产生。 LISA和雅典娜的协同合作 版权:ESA – S. Poletti 在两个螺旋形黑洞最终合并的一个月前,LISA会探测它们发射出的引力波,那时,黑洞之间的距离大约有它们半径的好几倍。科学家预计,LISA能探测到宇宙中所有合并事件的一小部分,特别是距离我们几十亿光年的那些合并,合并产生的X射线会增强,让雅典娜最终能观测到。 “实际上,我们甚至都没法知道LISA探测到的第一个信号来自哪里,因为LISA是一个全天空的传感装置,相比于望远镜,它的工作原理更像是一个麦克风。”保罗解释道。 黑洞合并 版权:ESA “但是,当黑洞旋转着互相靠近时,它们的引力波信号幅度会得到增强;再加上卫星沿轨道的运动,LISA将能够逐渐提高引力波源空间位置的精度,直到两个黑洞最终合并为止。” 在合并末期的几天前,引力波数据会将事件源的位置精确到约10平方度的天空区域,大约为满月时月球面积的50倍。 这个范围还是很大,但足以能够让雅典娜着手扫描深空,寻找这种巨大冲撞事件发出的X射线。模拟表明,两个螺旋形黑洞会调节周围的气体运动,因此X射线特征可能具有与引力波信号相当的频率。 然后,就在黑洞最终合并前的几个小时,LISA可以提供关于空间位置更精确的指示,基本上与雅典娜宽视场成像仪(Wide Field Imager,WFI)的视野大小相同,因此X射线观测台可以直接指向事件源。 “在两个黑洞合为一体之前捕捉到X射线信号将会是一个巨大的挑战,但是我们非常有信心,能够在合并期间和之后成功观测到X射线。” 马泰奥解释说,“我们或许可以看到新X射线源的出现,甚至也许能目睹一个活跃星系核的诞生,还会有高能粒子流以接近光速的速度发射到新形成的黑洞之上和之外。” 当超大质量黑洞合并 版权:ESA – S. Poletti 我们从未观察到超大质量黑洞合并事件,因为到目前为止,我们并没有能达到观测条件的设备。首先,我们需要LISA来探测引力波,并告诉我们该往空中的哪个方向进行搜寻;然后,我们还需要雅典娜利用X射线对黑洞合并事件进行高精度观察,看看如此浩大的碰撞会对黑洞周围的气体产生怎样的影响。 我们完全可以用理论和模拟来预测事件的走向,但如果想要知道确切的答案,我们就需要这两个宏伟任务的协同合作。 一百年前,1919年的5月29日,在日全食期间对恒星位置的观测,给爱因斯坦广义相对论所预测的光的引力弯曲提供了第一个经验证据。 那次历史性的日食开创了地球和太空中引力实验的世纪,启发了雅典娜和LISA等任务,以及更多更令人兴奋的发现。 1919年日食的照片底片 版权:皇家天文学会(Royal Astronomical Society) 2014年,雅典娜被选为ESA宇宙视觉计划中的第二大(L2)任务,而LISA则是2017年的第三大(L3)任务。2019年的白皮书中,雅典娜-LISA的协同研究团队描述了两个任务联合执行可以进行的附加科学研究。 雅典娜由ESA主导,美国航空航天局(NASA)和日本宇宙航空研究开发机构(Japan Aerospace Exploration Agency,JAXA)做出了重要贡献。WFI由德国马克斯普朗克外星物理研究所(Max Planck Institute for extraterrestrial Physics)领导的国际财团提供,包括多个ESA成员国以及美国。 在法国国家空间研究中心(Centre National d’Etudes Spatiales,CNES)的管理下,X射线积分视场单元(X-ray Integral Field Unit,X-IFU)由法国、荷兰和意大利领导的国际财团提供,此外还包括几个ESA成员国、日本和美国。 LISA由ESA主导,NASA做出了重要贡献。 LISA背后的财团由德国马克斯普朗克引力物理研究所(Max Planck Institute for Gravitational Physics)领导,还包括多个ESA成员国和美国。 参考: http://www.esa.int/Our_Activities/Space_Science/A_unique_experiment_to_explore_black_holes

科学家们是如何拍摄首张黑洞照片的?

科学家们是如何拍摄首张黑洞照片的?

椭圆星系M87位于室女座,距离我们大约5500万光年,它的中心有一个超大质量黑洞,是我们太阳质量的65亿倍,任何物质都不能逃脱它的重力场,我们无法直接观测黑洞,因此科学家们通过观测黑洞附近的物质环绕黑洞时发出的电磁波,让黑洞像阴影呈现出来。