黑洞世界的双重翘曲

黑洞世界的双重翘曲

2021年04月16日 The Doubly Warped World of Binary Black Holes Scientific Visualization Credit: NASA, Goddard Space Flight Center, Jeremy Schnittman and Brian P. Powell – Text: Francis Reddy Explanation: Light rays from accretion disks around a pair of orbiting supermassive black holes make their way through the warped space-time produced by extreme gravity in this stunning computer visualization. The simulated accretion disks have been given different false color schemes, red for the disk surrounding a 200-million-solar-mass black hole, and blue for the disk surrounding a 100-million-solar-mass black hole. That makes it easier to track the light sources, but the choice also reflects reality. Hotter gas gives off light closer to the blue end of the spectrum and material orbiting smaller black holes experiences stronger gravitational effects…

NASA新的可视化技术探究了双黑洞的光曲之舞

NASA新的可视化技术探究了双黑洞的光曲之舞

在NASA的一部新的可视化影片中,一对质量为太阳几百万倍的轨道黑洞进行了催眠式的表演。这部影片描绘了黑洞是如何扭曲和重定向围绕在每个黑洞的热气体漩涡(称为吸积盘)发出的光。 从轨道平面附近看,每个吸积盘都呈现出特有的双峰状。但是,当一个黑洞从另一个黑洞前面经过时,前景黑洞的引力将另一个黑洞转变为快速变化的弧形序列。当来自两个吸积盘的光线在黑洞附近纠结的空间和时间结构中穿行时,这些扭曲就会发生。 探索两个环绕超大质量黑洞的极端引力如何扭曲我们的视野。在这个可视化图中,明亮、炽热、搅动的气体盘环绕着两个黑洞,用红色和蓝色显示,以便更好地追踪光源。红色吸积盘围绕着较大的黑洞运行,它的重量是我们太阳质量的2亿倍,而它较小的蓝色黑洞的质量只有红色黑洞的一半。放大每一个黑洞,就能看到另一个黑洞的多个越来越扭曲的图像。观看视频了解更多信息。 视频来源:NASA’s Goddard Space Flight Center/Jeremy Schnittman and Brian P. Powell “我们看到了两个超大质量黑洞,一个更大的有2亿太阳质量,一个较小的只有另一个黑洞质量的一半,”杰瑞米·施尼特曼(Jeremy Schnittman)说,他是位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心(Goddard Space Flight Center)的天体物理学家。“这是一种双黑洞系统,我们认为这两个黑洞都可以维持吸积盘持续数百万年。” 吸积盘具有不同的颜色,红色和蓝色,以便更容易跟踪光源,但这种选择也反映了现实。温度较高的气体发出的光接近光谱的蓝色端,围绕较小黑洞运行的物质受到更强的引力作用,从而产生更高的温度。对于这些物质,两个吸积盘实际上都以紫外线的形式发出大部分光,蓝色的吸积盘温度略高。 这样的可视化有助于科学家们描绘出极端重力的哈哈镜的迷人结果。这段新的视频在比施尼特曼(Schnittman)制作的早期视频的基础上增加了一倍,该视频从不同角度展示了一个孤独的黑洞。 从侧面看,吸积盘在一侧明显更亮。引力扭曲改变了来自吸积盘不同部分的光路,产生了扭曲的图像。黑洞附近气体的快速运动通过一种叫做多普勒加速的现象改变了吸积盘的亮度——这是爱因斯坦相对论的一种效应,它使旋转向观察者的一侧变亮,而使旋转向观察者的另一侧变暗。 该可视化还显示了一种更微妙的现象,称为相对论像差。当黑洞接近观察者时,黑洞显得更小,而当黑洞远离观察者时,黑洞显得更大。 当从上方观察系统时,这些效应消失了,但出现了新的特征。这两个黑洞都能产生围绕其轨道运行的黑洞的小图像。仔细看,很明显这些图像实际上是侧面视图。为了产生这些图像,来自黑洞的光必须被重定向90度,这意味着我们同时从两个不同的角度(面朝上和边朝上)观察黑洞。 该系统的正面图像突出了小黑洞与其大黑洞的扭曲图像(插图)。为了到达摄像机,较小的黑洞必须将来自红色黑洞的光线弯曲90度。这副图像的吸积盘呈现为一条线,这意味着我们看到的是红色黑洞的侧面——同时也从上面看到它。蓝色吸积盘的二次图像也在最靠近大黑洞的明亮光圈外形成。 图片来源:NASA’s Goddard Space Flight Center/Jeremy Schnittman and Brian P. Powell “这种新的可视化技术的一个引人注目的方面是引力透镜产生的图像的自相似性,”施尼特曼解释说,“放大到每个黑洞,可以看到它的黑洞越来越多扭曲的图像。” 施尼特曼通过计算来自吸积盘的光线在穿过黑洞周围扭曲的时空时所采取的路径,创造了这个可视化影像。在现代台式电脑上,制作电影帧所需的计算需要花费大约十年的时间。于是,施尼特曼与戈达德数据科学家布莱恩·P·鲍威尔(Brian P. Powell)合作,使用NASA气候模拟中心的Discover超级计算机。仅使用Discover的12.9万个处理器中的2%,这些计算花了大约一天的时间。 天文学家希望在不久的未来,他们能侦测到类似此例这种超大质量黑洞系统,在回旋靠近及合并时,所发出的引力波(或称为时空结构上的涟漪)。 参考来源: https://www.nasa.gov/feature/goddard/2021/new-nasa-visualization-probes-the-light-bending-dance-of-binary-black-holes

天文望远镜联合对著名黑洞进行前所未有的观测

天文望远镜联合对著名黑洞进行前所未有的观测

Credits: NASA/GSFC/SVS/M.Subbarao & NASA/CXC/SAO/A.Jubett 2019年4月,科学家们使用事件视界望远镜(EHT)发布了第一张M87星系黑洞的图像。然而,这一非凡的成就仅仅是科学故事的开始。 来自19个天文台的数据即将公布,这些数据有望让人们对这个黑洞及其驱动的系统有前所未有的了解,并改善对爱因斯坦广义相对论的检验。 “我们知道,第一张黑洞的直接图像将是突破性的,”日本国家天文台(National Astronomical Observatory of Japan)的哈达和弘(Kazuhiro Hada)说,他是一项新研究的合著者,该研究发表在《天体物理学杂志通讯》(Astrophysical Journal Letters)上,描述了这一庞大的数据集。“但为了从这张非凡的图像中获得最大的效果,我们需要通过对整个电磁波谱的观测,了解黑洞当时的一切行为。” 超大质量黑洞的巨大引力可以为粒子的喷射提供能量,这些粒子以几乎光速的速度穿越遥远的距离。M87的喷射流产生的光横跨整个电磁波谱,从无线电波到可见光再到伽马射线。这一光谱的光的强度为每个黑洞提供了不同的模式。识别这种模式可以对黑洞的属性(例如,它的自旋和能量输出)提供至关重要的洞察力,但这是一个挑战,因为模式会随着时时间而改变。 科学家们用世界上最强大的地面和太空望远镜来协调观测,收集来自整个光谱的光,以弥补这种变化。这是迄今为止对带有喷射流的超大质量黑洞进行的最大的同步观测活动。 参与此次观测活动的NASA望远镜包括钱德拉X射线天文台、哈勃太空望远镜、尼尔·盖尔·斯威夫特天文台、核光谱望远镜阵列(NuSTAR)和费米伽马射线太空望远镜。 从EHT现在标志性的M87图像开始,一段新的视频将带领观众体验每个望远镜的数据之旅。这段视频显示了许多10倍尺度的数据,包括光的波长和物理大小。(数据在2017年4月获得)。然后,它通过来自全球各地的其他射电望远镜阵列的图像,在每一步中向外移动视野。(方块宽度的比例在右下角以光年表示)。接下来,视野将变为探测可见光(哈勃和斯威夫特)、紫外光(斯威夫特)和X射线(钱德拉和NuSTAR)的望远镜。屏幕拆分显示了这些同时覆盖相同面积天空的图像之间的比较情况。画面最后显示了地面上的伽马射线望远镜和太空中的费米从这个黑洞及其喷射流中探测到的情况。 每台望远镜都能提供有关M87中心这个65亿太阳质量黑洞的行为和影响的不同信息,该黑洞距离地球约5500万光年。 “有多个小组正在紧锣密鼓地研究他们的模型是否与这些丰富的观测数据相匹配,我们很高兴看到整个社会都在使用这个公共数据集来帮助我们更好地理解黑洞和它们的喷射流之间的深层联系。”加拿大蒙特利尔麦吉尔大学的合著者达里尔·哈格德(Daryl Haggard)说。 这些数据是由来自32个国家或地区的近200个机构的760名科学家和工程师组成的团队,利用全球各地的机构和机构资助的天文台收集。观测时间集中在2017年3月底至4月中旬。 这些数据是由一个由来自32个国家或地区近200个机构的760名科学家和工程师组成的团队收集的,他们使用的天文台由全球各机构资助。观测集中在2017年3月底至4月中旬。 “这组令人难以置信的观测结果包括许多世界上最好的望远镜,”共同作者马来西亚吉隆坡马来亚大学的胡安·卡洛斯·阿尔加巴(Juan Carlos Algaba)说。“这是全世界天文学家为追求科学而共同努力的一个精彩例子。” 第一个结果显示,M87超大质量黑洞周围物质产生的电磁辐射强度是迄今为止所见过的最低的。这为从接近视界的区域到数万光年之外的区域研究黑洞提供了理想的条件。 这些望远镜的数据和当前(以及未来)的EHT观测数据的结合,将使科学家们能够对一些最重要、最具挑战性的天体物理学研究领域进行重要的研究。例如,科学家计划利用这些数据改善对爱因斯坦广义相对论的检验。目前,这些测试的主要障碍是不确定围绕黑洞旋转的物质是否会被喷射出去,特别是确定发射光的特性。 今天的研究解决的一个相关问题涉及被称为宇宙射线的高能粒子的来源,这些粒子不断地从外太空轰击地球。它们的能量可以比地球上最强大的加速器——大型强子对撞机所能产生的能量高出一百万倍。从黑洞发射的巨大喷射流,就像今天的图像中显示的那样,被认为是最高能量宇宙射线的最可能来源,但关于细节还有很多问题,包括粒子被加速的精确位置。因为宇宙射线通过其碰撞产生光,所以最高能量的伽马射线可以精确地确定这个位置,新的研究表明,这些伽马射线很可能不会在事件视界附近产生——至少不会在2017年产生。解决这一争论的关键是将其与2018年的观测结果以及本周收集的新数据进行比较。 “理解粒子加速度对于我们理解EHT图像和喷射流的所有‘颜色’至关重要,”来自阿姆斯特丹大学的合著者塞拉·马尔柯夫说。“这些喷射流设法将黑洞释放的能量输送到比宿主星系更大的尺度,就像一根巨大的电源线。我们的结果将帮助我们计算所携带的能量,以及黑洞喷射流对环境的影响。 这个新的数据宝库的发布恰逢EHT的2021年观测活动,这是自2018年以来首次利用全球范围内的无线电天线阵列进行观测。去年的活动因为COVID-19大流行而被取消,前一年则因为不可预见的技术问题而暂停。就在本周,EHT天文学家又将目标锁定在我们银河系(被称为人马座A*)的超大质量黑洞M87上,连同几个更遥远的黑洞一起进行了6个夜晚的观测。与2017年相比,该阵列得到了改进,增加了三台射电望远镜:格陵兰望远镜、亚利桑那州的基特峰12米望远镜和法国的北方扩展毫米阵列(NOEMA)。 “随着这些数据的发布,再加上观测的恢复和改进的EHT,我们知道许多令人兴奋的新结果即将出现,”耶鲁大学的合著者米斯拉夫·巴洛科维奇(Mislav Baloković) 说。 描述这些结果的《天体物理杂志通讯》可以在这里获取。 参考来源: https://www.nasa.gov/mission_pages/chandra/news/telescopes-unite-in-unprecedented-observations-of-famous-black-hole.html

星系M87、喷流与著名黑洞

星系M87、喷流与著名黑洞

2021年04月15日 The Galaxy, the Jet, and a Famous Black Hole Image Credit: NASA, JPL-Caltech, Event Horizon Telescope Collaboration Explanation: Bright elliptical galaxy Messier 87 (M87) is home to the supermassive black hole captured by planet Earth’s Event Horizon Telescope in the first ever image of a black hole. Giant of the Virgo galaxy cluster about 55 million light-years away, M87 is the large galaxy rendered in blue hues in this infrared image from the Spitzer Space telescope. Though M87 appears mostly featureless and cloud-like, the Spitzer image does record details of relativistic jets blasting from the galaxy’s central region. Shown in the inset at top right, the jets themselves span thousands of light-years. The brighter jet seen on the right is approaching and close to…

NASA的罗曼太空望远镜将如何发现孤立的黑洞

NASA的罗曼太空望远镜将如何发现孤立的黑洞

ASA的南希·格蕾丝·罗曼太空望远镜将于本世纪20年代中期发射升空,届时它将为红外宇宙提供一个前所未有的窗口。该任务计划中的一项调查将利用引力的奇特之处来揭示太阳系以外的数千颗新行星。同样的调查还将提供迄今为止最好的机会,首次明确探测到孤零零的小黑洞。当一颗质量超过20个太阳的恒星耗尽其核心的核燃料,并在自身重量的作用下坍塌时,这些天体就被称为恒星质量黑洞。 黑洞具有强大的引力,连光都无法逃脱它们的魔爪。由于黑洞看不见,我们只能通过观察它们对周围环境的影响,间接地找到黑洞。在星系中心发现的超大质量黑洞,其质量是太阳的几百万倍,它们会扰乱附近恒星的轨道,偶尔还会将它们撕碎,造成可见的后果。 但天文学家认为,绝大多数恒星质量的黑洞要轻得多,它们周围没有任何东西可以提示我们它们的存在。罗曼望远镜将通过观察行星的引力如何扭曲遥远的星光来发现整个银河系中的行星,由于恒星质量的黑洞也会产生同样的效果,所以这项任务应该也能找到它们。 这个动画用黑洞说明了引力微透镜的概念。当黑洞从背景恒星的前方经过时,恒星的光线在穿过黑洞周围扭曲的时空时就会发生扭曲。它变成了一个虚拟的放大镜,放大了遥远的背景恒星的亮度。与质量较小的恒星或行星作为透镜对象时不同,黑洞扭曲了时空,以至于明显改变了遥远恒星在天空中的视位置。 视频来源:美国宇航局戈达德航天局;美国宇航局戈达德太空飞行中心/概念图像实验室 “到目前为止,天文学家已经在银河系中发现了大约20个恒星质量的黑洞,但我们都能看到它们的伴星,”巴尔的摩太空望远镜科学研究所(Space Telescope Science Institute)的天文学家凯拉什·萨胡(Kailash Sahu)说。“许多科学家,包括我自己在内,花了数年时间,试图用其他望远镜自自行寻找黑洞。有了罗曼望远镜,这一切都将成为可能。” 制造黑洞 恒星似乎是永恒的灯塔,但每颗恒星天生的燃料供应有限。恒星一生中的大部分时间都在将其中心的氢转化为氦,从而产生巨大的能量。这个过程被称为核聚变,就像一场受控的爆炸–外压和引力之间微妙平衡的拉锯战。 但当恒星的燃料耗尽,核聚变速度减慢时,引力接管,恒星的核心收缩。这种向内的压力加热了核心,并引发了新一轮的核聚变,产生巨大的能量,以至于恒星的外层膨胀。恒星体积膨胀,表面冷却,成为红巨星或超巨星。 最终留下的恒星尸体类型取决于恒星的质量。当类似太阳的恒星燃料耗尽时,它最终会喷射出外层,只留下一个小而热的核心,称为白矮星。白矮星会随着时间的推移而消逝,就像曾经熊熊燃烧的火焰的余烬。我们的太阳还剩下50亿年的燃料。 更大质量的恒星运行温度越高,它们消耗燃料的速度也就越快。在大约8倍于太阳的质量之上,大多数恒星注定要在成为黑洞之前, 死于被称为超新星的灾难性爆炸中。在质量最高的恒星上,恒星可能会跳过爆炸,直接坍塌成黑洞。 这些质量巨大的恒星的核心会坍缩,直到它们的质子和电子挤压在一起形成中子。如果剩余的核心重量小于3倍太阳质量,坍缩就会停止,留下一颗中子星。对于较大的剩余核,即使是中子也无法承受压力,坍塌会继续形成黑洞。 数以百万计的大质量恒星都经历了这个过程,现在以黑洞的形式潜伏在整个银河系中。天文学家认为银河系中应该有大约1亿个恒星质量的黑洞,但我们只有在它们明显影响周围环境的时候才能发现它们。当黑洞周围形成炽热、发光的吸积盘时,或者当他们发现恒星围绕一个巨大但不可见的物体运行时,天文学家可以推断出黑洞的存在。 “罗曼望远镜将彻底改变我们对黑洞的搜索,因为它将帮助我们在附近什么都没有的情况下找到黑洞,”萨胡说。”星系应该到处都是这些物体。” 看不见的东西 罗曼望远镜将主要利用一种叫做引力微透镜的技术来发现太阳系以外的行星。当一个大质量的物体,比如一颗恒星,从我们较近的位置穿过一颗较远的恒星前时,来自较远恒星的光在穿过较近恒星周围扭曲的时空时会发生扭曲。 其结果是,较近的恒星就像一个天然的透镜,将来自背景恒星的光线放大。围绕透镜星运行的行星可以在较小的范围内产生类似的效果。 除了使背景恒星变亮之外,一个更巨大的透镜天体还能使时空扭曲,以至于明显地改变了远处恒星在天空中的位置。这种位置上的变化,被称为天体微透镜,非常小——只有大约一毫秒。这就好比从洛杉矶向纽约看过去,分辨出帝国大厦顶上大约四分之一宽度的小运动。利用罗曼望远镜精湛的空间分辨率来探测如此微小的明显运动——这是一个巨大黑洞的征兆,天文学家将能够限制黑洞的质量、距离和在星系中的运动。 微透镜信号是如此罕见,以至于天文学家需要长时间监测数以亿计的恒星才能捕捉到它们。天文台必须能够极其精确地追踪背景恒星的位置和亮度——这是只有在地球大气层之上才能做到的事情。罗曼望远镜在太空中的位置和巨大的视野将为我们提供迄今为止探测银河系黑洞数量的最佳机会。 “与我们预期的相比,我们在双星系统中发现的恒星质量黑洞具有奇怪的特性,”萨胡说。”它们的质量都是太阳的10倍左右,但我们认为它们的质量范围应该更大,在3到80个太阳质量之间。通过对这些天体进行普查,罗曼望远镜将帮助我们更多地了解恒星的死亡过程。” 南希·格蕾丝·罗曼太空望远镜由位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心管理,参与该项目的还有NASA的喷气推进实验室、南加州的加州理工学院/IPAC、巴尔的摩的太空望远镜科学研究所,以及一个由来自不同研究机构的科学家组成的科学团队。主要的工业合作伙伴是科罗拉多州博尔德的Ball Aerospace and Technologies Corporation、佛罗里达州墨尔本的L3Harris Technologies和加利福尼亚州千橡树的Teledyne Scientific & Imaging。 参考来源: https://www.nasa.gov/feature/goddard/2021/how-nasa-s-roman-space-telescope-will-uncover-lonesome-black-holes

拍摄黑洞

拍摄黑洞

In April 2019, a black hole and its shadow were captured in an image for the first time, a historic feat by an international network of radio telescopes called the Event Horizon Telescope (EHT). EHT is an international collaboration whose support in the U.S. includes the National Science Foundation. A black hole is an extremely dense object from which no light can escape. Anything that comes within a black hole’s “event horizon,” its point of no return, will be consumed, never to re-emerge, because of the black hole’s unimaginably strong gravity. By its very nature, a black hole cannot be seen, but the hot disk of material that encircles it shines bright. Against a bright backdrop, such as this disk, a black hole appears to…

当黑洞互撞

当黑洞互撞

2021年04月11日 When Black Holes Collide Video Credit & Copyright: Simulating Extreme Spacetimes Collaboration Explanation: What happens when two black holes collide? This extreme scenario occurs in the centers of many merging galaxies and multiple star systems. The featured video shows a computer animation of the final stages of such a merger, while highlighting the gravitational lensing effects that would appear on a background starfield. The black regions indicate the event horizons of the dynamic duo, while a surrounding ring of shifting background stars indicates the position of their combined Einstein ring. All background stars not only have images visible outside of this Einstein ring, but also have one or more companion images visible on the inside. Eventually the two black holes coalesce. The end stages…

星系M106

星系M106

2021年04月09日 Messier 106 Image Credit: NASA, Hubble Legacy Archive, Kitt Peak National Observatory; Amateur Data & Processing Copyright: Robert Gendler Explanation: Close to the Great Bear (Ursa Major) and surrounded by the stars of the Hunting Dogs (Canes Venatici), this celestial wonder was discovered in 1781 by the metric French astronomer Pierre Mechain. Later, it was added to the catalog of his friend and colleague Charles Messier as M106. Modern deep telescopic views reveal it to be an island universe – a spiral galaxy around 30 thousand light-years across located only about 21 million light-years beyond the stars of the Milky Way. Along with a bright central core, this stunning galaxy portrait, a composite of image data from amateur and professional telescopes, highlights youthful blue…

来自黑洞的反射

来自黑洞的反射

This 2003 composite X-ray (blue and green) and optical (red) image of the active galaxy, NGC 1068, shows gas blowing away in a high-speed wind from the vicinity of a central supermassive black hole. Regions of intense star formation in the inner spiral arms of the galaxy are highlighted by both optical and X-ray emission. The elongated shape of the gas cloud is thought to be due to the funneling effect of a torus, or doughnut-shaped cloud, of cool gas and dust that surrounds the black hole. The torus, which appears as the elongated white spot in the accompanying 3-color X-ray images, has a mass of about 5 million Suns. Radio observations indicate that the torus extends from within a few light years of the…

寻找失踪的黑洞

寻找失踪的黑洞

Despite searching with NASA’s Chandra X-ray Observatory and Hubble Space Telescope, astronomers have no evidence that a distant black hole estimated to weigh between 3 billion and 100 billion times the mass of the Sun is anywhere to be found. This missing black hole should be in the enormous galaxy in the center of the galaxy cluster Abell 2261, which is located about 2.7 billion light years from Earth. This composite image of Abell 2261 contains optical data from Hubble and the Subaru Telescope showing galaxies in the cluster and in the background, and Chandra X-ray data showing hot gas (colored pink) pervading the cluster. The middle of the image shows the large elliptical galaxy in the center of the cluster. Learn more. Image Credit:…