哈勃望远镜观测到了一个由红、白、蓝组成的星团

哈勃望远镜观测到了一个由红、白、蓝组成的星团

This image taken with the NASA/ESA Hubble Space Telescope depicts the open star cluster NGC 330, which lies around 180,000 light-years away inside the Small Magellanic Cloud. The cluster – which is in the constellation Tucana (the Toucan) – contains a multitude of stars, many of which are scattered across this striking image. Because star clusters form from a single primordial cloud of gas and dust, all the stars they contain are roughly the same age. This makes them useful natural laboratories for astronomers to learn how stars form and evolve. This image uses observations from Hubble’s Wide Field Camera 3 and incorporates data from two very different astronomical investigations. The first aimed to understand why stars in star clusters appear to evolve differently from…

哈勃望远镜拍摄的令人眼花缭乱的动态二人组

哈勃望远镜拍摄的令人眼花缭乱的动态二人组

A cataclysmic cosmic collision takes center stage in this image taken with the NASA/ESA Hubble Space Telescope. The image features the interacting galaxy pair IC 1623, which lies around 275 million light-years away in the constellation Cetus (the Whale). The two galaxies are in the final stages of merging, and astronomers expect a powerful inflow of gas to ignite a frenzied burst of star formation in the resulting compact starburst galaxy. This interacting pair of galaxies is a familiar sight; Hubble captured IC 1623 in 2008 using two filters at optical and infrared wavelengths on the Advanced Camera for Surveys. This image incorporates data from Wide Field Camera 3, and combines observations taken in eight filters spanning infrared to ultraviolet wavelengths to reveal the finer…

哈勃拍摄到一个迷人的螺旋星系

哈勃拍摄到一个迷人的螺旋星系

This image shows the spiral galaxy NGC 5037, in the constellation of Virgo. First documented by William Herschel in 1785, the galaxy lies about 150 million light-years away from Earth. Despite this distance, we can see the delicate structures of gas and dust within the galaxy in extraordinary detail. This detail is possible using Hubble’s Wide Field Camera 3 (WFC3), whose combined exposures created this image. WFC3 is a very versatile camera, as it can collect ultraviolet, visible, and infrared light, thereby providing a wealth of information about the objects it observes. WFC3 was installed on Hubble by astronauts in 2009, during Servicing Mission 4 (SM4). SM4 was Hubble’s final Space Shuttle servicing mission, expected to prolong Hubble’s life for at least another five years….

哈勃太空望远镜追踪到星系旋臂的快速射电爆发

哈勃太空望远镜追踪到星系旋臂的快速射电爆发

天文学家利用美国宇航局(NASA)的哈勃太空望远镜追踪了五个遥远星系螺旋臂上五次短暂而强大的射电爆发的位置。 这些被称为快速射电风暴(FRBs)的异常事件在千分之一秒内产生的能量相当于太阳一年产生的能量。由于这些短暂的无线电脉冲在眨眼之间就消失了,研究人员很难追踪到它们的来源,更不用说确定是什么或哪些物体造成了它们。因此,大多数时候,天文学家并不知道确切的观测地点。 天文学家利用哈勃太空望远镜追踪到上图中两个星系的旋臂处有两次短暂而强大的射电爆发。左边的两张图片展示了哈勃望远镜拍摄的每个星系的完整快照。右边的两张数字增强图像更详细地展示了每个星系的螺旋结构。这些射电爆发的目录名称是FRB 190714(上排)和FRB 180924(下排)。这些星系远离地球,呈现出数十亿年前的样子。这四幅图像中的每一幅都用虚线标出了明亮的射电耀斑的位置。 影像来源:SCIENCE: NASA, ESA, Alexandra Mannings (UC Santa Cruz), Wen-fai Fong (Northwestern) IMAGE PROCESSING: Alyssa Pagan (STScI) [rml_read_more] 确定这些爆炸来自哪里,特别是它们来自哪些星系,对于确定什么样的天文事件会触发如此强烈的能量闪光非常重要。对八个FRB的新的哈勃调查帮助研究人员缩小了可能的FRB来源的范围。 夜光闪烁 2001年7月24日,帕克斯射电天文台在存档数据中发现了第一个FRB。从那时起,天文学家们发现了多达1000个FRB,但他们只能将其中大约15个与特定的星系联系起来。 “我们的结果是新颖而令人兴奋的。这是对FRB群的首次高分辨率观测,哈勃望远镜发现其中5个位于星系旋臂附近或其上。”加州大学圣克鲁兹分校的亚历山德拉-曼宁斯(Alexandra Mannings)是这项研究的主要作者,他说道。“大多数星系质量巨大,相对年轻,并且仍然在形成恒星。成像使我们能够更好地了解宿主星系的整体属性,比如质量和恒星形成率,以及探测在FRB位置上发生了什么,因为哈勃有如此高的分辨率。” 在哈勃的研究中,天文学家不仅把它们都固定在宿主星系上,而且还确定了它们的起源位置。哈勃望远镜在2017年观察了其中一个FRB位置,在2019年和2020年观察了另外七个。 “我们不知道是什么导致了FRB,所以当我们有它的时候,使用环境是非常重要的。”伊利诺斯州埃文斯顿西北大学的研究小组成员冯文辉说。“这项技术在识别其他类型的瞬变现象的前身方面非常有效,比如超新星和伽马射线爆发。哈勃在这些研究中也发挥了重要作用。” 哈勃研究中的星系存在于数十亿年前。因此,天文学家看到的星系是它们在宇宙约为其目前年龄一半时出现的样子。 其中许多星系的质量与我们的银河系一样大。这些观测是用哈勃的广域相机3号在紫外光和近红外光下进行的。 紫外光可以追踪到年轻恒星沿着螺旋星系蜿蜒的臂膀所发出的光芒。研究人员使用近红外图像来计算星系的质量,并找到较老的恒星群所在的位置。 为了寻找神秘的快速射电风暴(FRB)的邻居,天文学家使用哈勃太空望远镜追踪到了其中的四个,即图片中所示的四个遥远的星系的旋臂。这些脉冲被编为FRB 190714(左上)、FRB 191001(右上)、FRB 180924(左下)和FRB 190608(右下)。由于这些射电脉冲在不到一眨眼的时间内就消失了,研究人员很难追踪到它们的来源。借助哈勃的敏锐视野,天文学家们在星系的旋臂上确定了它们的位置(用虚线表示)。 影像来源:SCIENCE: NASA, ESA, Alexandra Mannings (UC Santa Cruz), Wen-fai Fong (Northwestern) IMAGE PROCESSING: Alyssa Pagan (STScI) 位置,位置,还是位置 这些图像显示了螺旋臂结构的多样性,从紧密缠绕到更加分散,揭示了恒星如何沿着这些突出的特征分布。星系的旋臂描绘了年轻的大质量恒星的分布。然而,哈勃望远镜的图像显示,在旋臂附近发现的FRB并不是来自最亮的区域,这些区域闪耀着大质量恒星的光芒。这些图像支持了一个观点,即FRB可能不是来自最年轻、质量最大的恒星。 这些线索帮助研究人员排除了这些明亮耀斑类型的一些可能触发因素,包括最年轻、质量最大的恒星的爆炸性死亡,它产生了伽马射线暴和一些类型的超新星。另一个不太可能的来源是中子星的合并,中子星是恒星被压碎的核心,在超新星爆炸中结束它们的生命。这些合并需要数十亿年的时间才能发生,而且通常在远离不再形成恒星的较老星系的旋臂处被发现。 磁性怪兽 然而,研究小组的哈勃结果与主要模型一致,即FRB起源于年轻的磁星爆发。磁星是一种具有强大磁场的中子星。它们被称为宇宙中最强的磁铁,拥有比冰箱门磁铁强大10万亿倍的磁场。天文学家去年把对我们银河系中发现的一个FRB的观测与一个已知的磁星所在的区域联系起来。 快速射电风暴,或称FRB,是非同寻常的事件,它在千分之一秒内产生的能量相当于太阳一整年的能量!天文学家利用NASA的哈勃太空望远镜追踪了5个短暂而强大的FRB的位置,这些FRB在其宿主星系的旋臂附近或上面。这项研究帮助排除了一些最初被认为可能导致这些明亮耀斑的恒星物体。 视频来源:美国宇航局戈达德太空飞行中心 “由于其强大的磁场,磁星是相当不可预测的,”方解释说。“在这种情况下,RB被认为是来自于一个年轻的磁星的耀斑。大质量恒星经过恒星演化成为中子星,其中一些中子星可以被强烈磁化,从而导致耀斑和表面的磁性过程,这些过程可以发射射电光。我们的研究符合这一情况,排除了非常年轻或非常古老的FRB的原生体。” 观测结果还帮助研究人员加强了FRB与大质量、恒星形成的星系的联系。以前对一些可能的FRB宿主星系的地面观测,并没有很清楚地探测到其中许多星系的底层结构,比如旋臂。因此,天文学家们不能排除FRB起源于一个隐藏在大质量星系之下的矮星系的可能性。据共同作者、加州大学圣克鲁兹分校的苏尼尔·西玛(Sunil Simha) 说,在哈勃的新研究中,仔细的图像处理和图像分析让研究人员排除了矮星系的存在。 尽管哈勃望远镜的结果令人兴奋,但研究人员表示,他们需要更多的观察,才能对这些神秘的闪光形成更明确的图像,并更好地确定它们的来源。“这是一个令人兴奋的新领域,”方说。“找到这些局部事件是谜题的一个主要部分,与之前的工作相比,这是一个非常独特的谜题部分。这是哈勃望远镜的独特贡献。” 该团队的研究结果将发表在即将出版的《天体物理学杂志》上。 哈勃太空望远镜是NASA和ESA(欧洲航天局)之间的一个国际合作项目。NASA位于马里兰州格林贝尔特的戈达德太空飞行中心负责管理该望远镜。位于马里兰州巴尔的摩市的太空望远镜科学研究所(STScI)负责哈勃望远镜的科学操作。STScI由位于华盛顿特区的天文学研究大学协会为NASA运营。 参考来源: https://www.nasa.gov/feature/goddard/2021/hubble-tracks-down-fast-radio-bursts-to-galaxies-spiral-arms

观察早期宇宙中的恒星

观察早期宇宙中的恒星

This June 2020 image from the Hubble Space Telescope shows the galaxy cluster MACS J0416. This is one of six galaxy clusters being studied by the Hubble Frontier Fields program, which produced the deepest images of gravitational lensing ever made. Scientists used intracluster light (visible in blue) to study the distribution of dark matter within the cluster. Image Credit: NASA, ESA and M. Montes (University of New South Wales) [rml_read_more] 这张哈勃太空望远镜在2020年6月拍摄的图像显示了星系星团MACS J0416。这是哈勃边疆场计划正在研究的六个星系团之一,该项目产生了迄今为止最深刻的引力透镜图像。科学家们星系内的光(蓝色可见)研究了星系内暗物质的分布。 图片提供:NASA,ESA和M.Montes(新南威尔士大学)

哈勃凝视着充满宇宙线索的星团

哈勃凝视着充满宇宙线索的星团

This detailed image features Abell 3827, a galaxy cluster that offers a wealth of exciting possibilities for study. Hubble observed it in order to study dark matter, which is one of the greatest puzzles cosmologists face today. The science team used Hubble’s Advanced Camera for Surveys and Wide Field Camera 3 to complete their observations. The two cameras have different specifications and can observe different parts of the electromagnetic spectrum, so using them both allowed the astronomers to collect more complete information. Hubble also observed Abell 3827 previously because of the interesting gravitational lens at its core. Looking at this cluster of hundreds of galaxies, it is amazing to recall that less than 100 years ago, many astronomers thought the Milky Way was the only…

天文学家发布了新的银河系外围的全天空地图

天文学家发布了新的银河系外围的全天空地图

银河系和大麦哲伦云(LMC)的图像叠加在周围星系晕的地图上。较小的结构是LMC通过这一区域时产生的尾迹。较大的浅蓝色特征对应于我们银河系北半球观测到的高密度恒星。 影像来源:美国宇航局/欧洲航天局/喷气实验室-加州理工学院/康罗伊等 新星图的亮点是由一个即将与银河系相撞的小星系引起的恒星尾流。该地图还可以为暗物质理论提供新的检验。 天文学家利用NASA和欧空局(European Space Agency)望远镜的数据,发布了一张我们银河系最外层区域的新的全天空地图。这个区域被称为银晕,位于形成银河系可辨认的中央盘的旋流旋臂之外,恒星稀少。尽管银晕可能看起来大部分是空的,但也有人预测它含有大量的暗物质,一种神秘而不可见的物质,被认为构成了宇宙中所有质量的主体。 新地图的数据来自欧洲航天局的盖亚任务和美国宇航局的近地天体广域红外巡天探测器(NEOWISE),该探测器于2009年至2013年运行,代号为WISE。该研究利用了该航天器在2009年至2018年间收集的数据。 这幅可视化图显示了我们银河系的中央圆盘和一个更小的附近星系——大麦哲伦云。一份新的全天空地图绘制出了银河系外围区域(被称为银晕)恒星的位置,该区域距离银河系中心约20万光年至32.5万光年。 视频来源:NASA/JPL-Caltech/NSF/R. Hurt/N. Garavito-Camargo & G. Besla 新地图揭示了一个叫做大麦哲伦星系(LMC)的小星系是如何被命名——如此命名是因为它是环绕银河系的两个矮星系中较大的一个——像一艘穿过水的船一样驶过银晕,它的引力在它后面的恒星中产生了尾流。LMC距离地球约16万光年,质量不到银河系的四分之一。 尽管银晕的内部部分已经被高度精确地绘制出来,但这是第一张提供银晕外部区域类似图片的地图,在那里可以找到尾流——距离银河系中心大约20万光年到32.5万光年。之前的研究已经暗示了尾流的存在,但是全天空地图证实了它的存在,并提供了它的形状、大小和位置的详细视图。 银晕中的这种扰动也为天文学家提供了一个机会来研究他们无法直接观测到的东西:暗物质。虽然暗物质不发射、反射或吸收光线,但它的引力影响已经在整个宇宙中被观测到。它被认为是建立星系的脚手架,如果没有它,星系就会在自转时分崩离析。据估计,暗物质在宇宙中比所有发光和/或与光相互作用的物质(从恒星到行星到气体云)多五倍。 尽管关于暗物质的性质有多种理论,但所有这些理论都表明,它应该存在于银晕中。如果是这样的话,那么当LMC驶过这个区域时,它应该也会在暗物质中留下尾流。在新星图中观察到的尾流被认为是这个暗物质尾流的轮廓;恒星就像这个看不见的海洋表面上的叶子,它们的位置随着暗物质的变化而变化。 暗物质和LMC之间的相互作用对我们的星系有很大的影响。当LMC绕着银河系运行时,暗物质的引力会拖住LMC,使其减速。这将导致这个矮星系的轨道变得越来越小,直到该星系在大约20亿年后最终与银河系相撞。这种类型的合并可能是宇宙中巨大星系增长的一个关键驱动因素。事实上,天文学家认为银河系在大约100亿年前已与另一个小星系合并。 “这种对较小星系能量的掠夺不仅是LMC与银河系合并的原因,也是所有星系合并发生的原因,”哈佛大学天文学博士生、这篇新论文的共同作者罗汉·奈度(Rohan Naidu)说。“我们地图上的尾迹非常清晰地证实了我们关于星系如何合并的基本图像是正确的!” 一个罕见的机会 论文的作者还认为,新的地图——连同其他数据和理论分析——可能为暗物质性质的不同理论提供测试,例如它是否像普通物质一样由粒子组成,以及这些粒子的性质是什么。 “你可以想象,如果船在水中航行或在蜂蜜中航行,船后的尾流会有所不同。”这项研究的共同作者哈佛大学教授、哈佛与史密森尼天体物理中心的天文学家查理·康罗伊(Charlie Conroy)说。“在这种情况下,尾流的特性取决于我们应用的暗物质理论。” 康罗伊领导的团队绘制了银晕中1,300多颗恒星的位置。在尝试测量从地球到这些恒星很大一部分的精确距离时出现了挑战:通常不可能确定一颗恒星是近距离的暗淡恒星还是远距离的明亮恒星。该团队使用了来自ESA盖亚任务的数据,该任务提供了天空中许多恒星的位置,但无法测量与银河系外围区域的恒星的距离。 在确定了最有可能位于银晕中的恒星(因为它们显然不在我们的银河系或LMC内)之后,研究小组寻找属于一类具有NEOWISE可探测到的特定光 “特征 “的巨型恒星。知道了所选恒星的基本属性,研究小组就可以计算出它们与地球的距离,并绘制出新的地图。它描绘了一个距离银河系中心约20万光年的区域,也就是LMC尾迹预计开始的地方,并向外延伸约12.5万光年。 康罗伊和他的同事在了解到位于图森的亚利桑那大学的一个天体物理学家团队制作计算机模型来预测银晕中的暗物质应该是什么样子之后,受到了启发,开始寻找LMC的尾迹。这两个小组共同进行了这项新的研究。 新研究中包含的亚利桑那团队的一个模型,预测了新地图上显示的恒星尾迹的一般结构和具体位置。一旦数据证实了模型是正确的,该团队就可以证实其他调查也暗示过的事情也暗示的内容:LMC很可能是在其围绕银河系的第一个轨道上。如果这个较小的星系已经有了多个轨道,那么尾迹的形状和位置就会与观测到的明显不同。天文学家认为LMC与银河系和另一个附近的星系M31形成于相同的环境,并且它即将完成环绕我们星系的第一个长轨道(大约130亿年)。由于它与银河系的相互作用,它的下一个轨道将大大缩短。 亚利桑那大学天文学博士生尼古拉斯·加拉维托·卡玛戈(Nicolas Garavito-Camargo) 说:“用观测数据证实我们的理论预测告诉我们,我们对这两个星系之间互动的理解,包括暗物质,是正确的。”尼古拉斯·卡玛戈领导了论文中使用的模型的工作。 新的地图也为天文学家提供了一个难得的机会来验证我们银河系中的暗物质(名义上的水或蜂蜜)的特性。在新的研究中,尼古拉斯·卡玛戈和他的同事们使用了一种流行的暗物质理论——冷暗物质理论,该理论与观察到的星图相对吻合。现在,亚利桑那大学的研究小组正在使用不同的暗物质理论进行模拟,以观察哪一个与观测到的恒星尾迹最匹配。 “这是一组非常特殊的情况,它们共同创造了这个场景,让我们可以测试暗物质理论。”这项研究的共同作者、亚利桑那大学副教授格蒂娜·贝斯拉(Gurtina Besla)说。“但是我们只能通过这个新地图和我们建立的暗物质模拟的结合来实现这个测试。” WISE航天器于2009年发射,在完成其主要任务后于2011年进入休眠状态。2013年9月,NASA重新启动了航天器,主要目标是扫描近地天体(NEO),该任务和航天器被更名为NEOWISE。NASA位于南加州的喷气推进实验室为NASA科学任务部管理和运营WISE。该任务是由NASA的探索者计划竞争性地选定,该计划由该机构位于马里兰州格林贝尔特的戈达德太空飞行中心管理。 NEOWISE是JPL(加州理工学院的一个部门)和亚利桑那大学的项目,由NASA的行星防御协调办公室支持。 参考来源: https://www.nasa.gov/feature/jpl/astronomers-release-new-all-sky-map-of-milky-way-s-outer-reaches

哈勃望远镜:30年,还在继续

哈勃望远镜:30年,还在继续

It’s March 2021 and in about another month the Hubble Space Telescope will celebrate 31 years in space observing the universe. In this image celebrating Hubble’s 30th birthday, the giant red nebula (NGC 2014) and its smaller blue neighbor (NGC 2020) are part of a vast star-forming region in the Large Magellanic Cloud, a satellite galaxy of the Milky Way, located 163,000 light-years away. The image is nicknamed the “Cosmic Reef,” because NGC 2014 resembles part of a coral reef floating in a vast sea of stars. Some of the stars in NGC 2014 are monsters. The nebula’s sparkling centerpiece is a grouping of bright, hefty stars, each 10 to 20 times more massive than our Sun. The seemingly isolated blue nebula at lower left…

哈勃太空望远镜拍摄“迷失星系”的照片

哈勃太空望远镜拍摄“迷失星系”的照片

Located in the constellation of Virgo (The Virgin), around 50 million light-years from Earth, the galaxy NGC 4535 is truly a stunning sight to behold. Despite the incredible quality of this image, taken from the NASA/ESA Hubble Space Telescope, NGC 4535 has a hazy, somewhat ghostly, appearance when viewed from a smaller telescope. This led amateur astronomer Leland S. Copeland to nickname NGC 4535 the “Lost Galaxy” in the 1950s. The bright colors in this image aren’t just beautiful to look at, as they actually tell us about the population of stars within this barred spiral galaxy. The bright blue-ish colors, seen nestled amongst NGC 4535’s long, spiral arms, indicate the presence of a greater number of younger and hotter stars. In contrast, the yellower…

磁性“高速公路”将材料引入雪茄星系

磁性“高速公路”将材料引入雪茄星系

是什么推动了雪茄星系(也就是所谓的梅西耶M82)大量气体和尘埃的喷射? 我们知道,成千上万颗恒星的爆发正在推动一股强大的超级风,将物质吹入星系间的空间。新的研究表明,磁场也有助于梅西耶M82的物质驱逐,这是一个著名的星爆星系的例子,具有独特的、细长的形状。 NASA的平流层红外天文观测站(SOFIA)的发现有助于解释尘埃和气体如何从星系内部移动到星际空间,并为星系的形成提供线索。这种物质富含碳和氧等支持生命的元素,是未来星系和恒星的基石。这项研究在美国天文学会的会议上进行了介绍。 SOFIA是NASA和德国航空航天中心(DLR))的联合项目,此前曾研究过梅西耶M82(雪茄星系的官方名称)核心附近磁场的方向。这一次,该团队使用了被广泛用于研究太阳周围物理的工具(称为太阳物理学),以了解在比以前大10倍的距离上环绕星系的磁场强度。 “这是研究太阳的古老物理学,但对星系来说是新事物,”位于美国宇航局硅谷艾姆斯研究中心(Ames Research Center)的大学空间研究协会(Universities Space Research Association)副主任琼·施梅尔茨(Joan Schmelz),即将发表的有关这项研究的论文的合著者说,“它帮助我们理解恒星和星系之间的空间是如何为未来的宇宙世代提供如此丰富的物质。” 雪茄星系位于大熊星座,距离地球1200万光年,正在经历一种被称为星爆的异常高的恒星形成速率。恒星的形成是如此强烈,以至于它产生了一股超级风,将星系中的物质吹出。SOFIA之前使用高分辨率机载宽带照相机(简称HAWC+)发现,风会拖拽星系核心附近的磁场,使其垂直于星系平面,跨越2000光年。 这张由哈勃太空望远镜和斯皮策太空望远镜拍摄的星系可见光和红外合成图像显示了梅西耶M82(又称雪茄星系)的磁场。来自炙热新恒星的恒星风形成了一股星系超级风,它喷出大量的热气体(红色)和垂直于窄星系(白色)的巨大烟雾尘埃(黄色/橙色)。研究人员利用平流层天文台获取红外天文学磁场数据和广泛用于研究太阳周围物理的工具,推断出该星系周围2万光年磁场的强度。它们似乎无限期地延伸到星系间的空间中,就像太阳的太阳风一样,并且可能有助于解释气体和尘埃是如何远离银河系传播的。 影像来源:NASA, SOFIA, L. Proudfit; NASA, ESA, Hubble Heritage Team; NASA, JPL-Caltech, C. Engelbracht 研究人员希望了解磁场线是否会像太阳风中的磁场环境一样无限延伸到星系间空间,或者转变成太阳活动区域中发现的类似日冕环的结构。他们计算得出,该星系的磁场像太阳风一样向外延伸,让被超级太阳风吹散的物质逃入星系间空间。 这些扩展的磁场可能有助于解释太空望远镜发现的气体和尘埃是如何远离银河系。 NASA的斯皮策太空望远镜在距银河系20,000光年的距离内探测到尘埃物质,但目前尚不清楚为什么它会从两个方向远离恒星,而不是呈锥形喷流而远离恒星。 宾夕法尼亚维拉诺瓦大学的博士后研究员、即将发表的这篇论文的合著者乔丹·圭拉·阿奎莱拉说:“磁场可能就像一条高速公路,为星系物质创造了广泛传播到星系间空间的通道。” 除极少数情况外,我们无法直接测量日冕中的磁场。因此,大约50年前,科学家们开发出了一种方法,可以精确地从太阳表面外推磁场到行星际空间,在太阳物理学中称为势场外推法。利用SOFIA现有的中心磁场观测数据,研究小组改进了这种方法,估算出雪茄星系周围25000光年左右的磁场。 “我们无法轻易地在如此大的规模上测量磁场,但我们可以用这些工具从太阳物理学中推断出来,”恩瑞奎·洛佩兹-罗德里格斯(Enrique Lopez-Rodriguez)说,他是位于埃姆斯的索菲亚大学空间研究协会的科学家,也是这项研究的主要作者,“这种新的、跨学科的方法为我们了解星爆星系提供了更广阔的视角。” SOFIA是NASA和德国航空航天中心的联合项目。 NASA位于加利福尼亚州硅谷的艾姆斯研究中心与总部位于马里兰州哥伦比亚市的大学空间研究协会以及斯图加特大学的德国SOFIA研究所合作管理SOFIA项目、科学和任务操作。该飞机由位于美国加利福尼亚州帕姆代尔的NASA阿姆斯特朗飞行研究中心703号楼进行维护和运营。高分辨率机载宽带摄像机仪器是由NASA喷气推进实验室领导的多机构团队开发并交付给NASA。 参考来源: https://www.nasa.gov/feature/magnetic-highway-channels-material-out-of-cigar-galaxy