哈勃望远镜观测到一条耀眼的宇宙项链

哈勃望远镜观测到一条耀眼的宇宙项链

The interaction of two doomed stars has created this spectacular ring adorned with bright clumps of gas ­– a diamond necklace of cosmic proportions. Fittingly known as the “Necklace Nebula,” this planetary nebula is located 15,000 light-years away from Earth in the small, dim constellation of Sagitta (the Arrow). A pair of tightly orbiting Sun-like stars produced the Necklace Nebula, which also goes by the less glamorous name of PN G054.203.4. Roughly 10,000 years ago, one of the aging stars expanded and engulfed its smaller companion, creating something astronomers call a “common envelope.” The smaller star continued to orbit inside its larger companion, increasing the bloated giant’s rotation rate until large parts of it spun outwards into space. This escaping ring of debris formed the…

哈勃望远镜拍摄到濒临毁灭的巨星

哈勃望远镜拍摄到濒临毁灭的巨星

在庆祝NASA哈勃太空望远镜发射31周年之际,天文学家将这个著名的天文台对准了一颗明亮 的 “名人星”,这是我们银河系中看到的最亮的恒星之一,被一团炽热的气体和尘埃包围着。 这颗名为船底座AG(AG Carinae)的恒星正在引力和辐射之间展开一场拉锯战,以避免自我毁灭。 在庆祝NASA哈勃太空望远镜发射31周年之际,天文学家将这个著名的天文台对准了一颗明亮 的 “名人星”,这是我们银河系中看到的最亮的恒星之一,被一团炽热的气体和尘埃包围着。 影像来源:NASA, ESA, STScI 围绕着这颗恒星的气体和尘埃的膨胀外壳大约有5光年宽,这相当于从这里到太阳以外最近的恒星半人马座的距离。 这个巨大的结构是在大约1万年前的一次或多次大喷发中形成的。这颗恒星的外层被吹进了太空——就像一个沸腾的茶壶从壶盖上炸开一样。排出的物质大约是太阳质量的10倍。 这些爆发是一种罕见的恒星的典型生命类型,被称为亮蓝色变星,这是一颗超级明亮、迷人的恒星短暂生命中的短暂抽搐阶段,它活得快,死得早。这些恒星是已知的质量最大、最亮的恒星之一。它们的寿命只有几百万年,相比之下,我们太阳的寿命大约为100亿年。船底座AG有几百万年的历史,位于距离我们2万光年的银河系内。 明亮的蓝色变星表现出双重性格:它们似乎在平静的幸福中度过了数年,然后突然暴跳如雷。这些庞然大物是极端的恒星,与太阳等普通恒星迥然不同。事实上,据估计,船底座AG的质量比我们的太阳大70倍,发出100万个太阳一样耀眼的光芒。 “我喜欢研究这类恒星,因为我对它们的不稳定性很着迷。它们正在做一些奇怪的事情,”德国波鸿鲁尔大学的发光蓝变体专家克斯汀·韦斯(Kerstin Weis)说。 这些图像是由哈勃太空望远镜上的WFC3/UVIS仪器获得的不同曝光的组合。几个滤波器被用来对狭窄的波长范围进行采样。颜色是对每个单色(灰度)图像分配不同色调(颜色)的结果,与单个滤波器相关。 影像来源:NASA, ESA, STScI 像产生星云这样的大爆发,在发蓝色变星的一生中会发生一到两次。蓝色变星只有在面临超新星自我毁灭的危险时才会抛出物质。由于其巨大的形式和超热的温度,像海市蜃楼这样的蓝色变星正在为保持稳定性而进行一场持续的战斗。 这是一场恒星内部辐射压力向外推和重力向内压之间的扳手腕比赛。这种宇宙匹配导致了恒星的膨胀和收缩。向外的压力有时会赢得胜利,恒星膨胀到如此巨大的规模,就像火山喷发一样,它的外层被吹散。但这种爆发只发生在恒星即将分裂的时候。当恒星将这些物质抛出后,它会收缩到正常的大小,回到原来的位置,静止一段时间。 这是一场来自恒星内部的辐射压力向外推和重力向内压的掰手腕比赛。这场宇宙比赛导致了恒星的膨胀和收缩。向外的压力偶尔会赢得战斗,恒星会膨胀到如此巨大的规模,以至于它的外层被炸掉,就像火山爆发一样。但是,这种爆发只发生在恒星濒临分裂的时候。在恒星喷出物质之后,它就会收缩到正常大小,重新稳定下来,并变得静止一段时间。 像其他许多发光的蓝色变星一样,船底座AG仍然不稳定。它曾经历过较小的爆发,但其威力却不如形成现在这个星云的那次。 这个巨大的结构是在大约1万年前的一次或多次大喷发中形成的。这颗恒星的外层被吹进了太空——就像一个沸腾的茶壶从壶盖上炸开一样。排出的物质大约是太阳质量的10倍。哈勃望远镜资深项目科学家詹妮弗·怀斯曼博士带我们参观了这幅令人惊叹的新图像,介绍了望远镜目前的健康状况,并总结了过去一年中哈勃望远镜对天文学的一些贡献。 视频来源:NASA’s Goddard Space Flight Center (字幕稍后附上) 虽然船底座AG现在处于静止状态,但作为一颗超热的恒星,它仍在继续喷出灼热的辐射和强大的恒星风(带电粒子流)。这股外流继续塑造着古老的星云,当流出的气体猛烈地射向移动较慢的外星云时,就会形成复杂的结构。这股风的速度高达每小时67万英里(100万公里/小时),大约是正在膨胀的星云的10倍。随着时间的推移,热风追上了较冷的被排出的物质,将其犁入,并将其推到离恒星更远的地方。这种“扫雪机”效应清除了恒星周围的空洞。 红色物质是灼热的氢气与氮气混合。左上角弥漫的红色物质精确地指出了风穿过物质的脆弱区域并将其扫入太空。 最显著的特征,以蓝色突出显示,是蝌蚪状的丝状结构和不平衡的气泡。这些结构是被恒星反射光照亮的尘埃团。蝌蚪状的特征,在左侧和底部最为突出,是被恒星风雕琢过的更密集的尘埃团哈勃望远镜的敏锐视野详细地揭示了这些精致的结构。 这张照片是在可见光和紫外线下拍摄的。紫外线可以让我们更清楚地看到丝状尘埃的结构,它一直向下延伸到恒星。哈勃望远镜非常适合紫外线观测,因为这个波长范围只能从太空中观察到。 大质量恒星,比如船底座AG,对天文学家来说非常重要,因为它们对周围环境有着深远的影响。哈勃望远镜历史上最大的项目——作为基本标准的年轻恒星紫外线遗产库——正在研究年轻恒星的紫外线以及它们塑造周围环境的方式。 发光的蓝色变星非常罕见:在我们所在的相邻星系群的星系中,已知的只有不到50颗。这些恒星在这个阶段中花费了数万年,在宇宙时间中只是一眨眼的时间。许多恒星预计会在巨大的超新星爆炸中结束生命,这种爆炸使宇宙中的铁以外的重元素更加丰富。 哈勃琐事 哈勃太空望远镜于1990年4月24日发射升空,对大约48000个天体进行了150多万次观测。 在它31年的寿命中,该望远镜已经环绕地球运行了超过18.1万圈,总里程超过45亿英里。 哈勃望远镜的观测产生了超过169兆兆字节的数据,这些数据可供现在和未来的研究人员使用。 使用哈勃数据的天文学家已经发表了超过1.8万篇科学论文,其中900多篇发表于2020年。 哈勃太空望远镜是NASA和ESA(欧洲航天局)之间的一个国际合作项目。NASA位于马里兰州格林贝尔特的戈达德太空飞行中心管理该望远镜。位于马里兰州巴尔的摩市的太空望远镜科学研究所(STScI)负责哈勃望远镜的科学操作。STScI是由位于华盛顿特区的天文学研究大学协会为NASA运营。 参考来源: https://www.nasa.gov/feature/goddard/2021/hubble-captures-giant-star-on-the-edge-of-destruction

NASA韦伯望远镜遮光罩打包完毕,将在年底开始百万英里的旅程

NASA韦伯望远镜遮光罩打包完毕,将在年底开始百万英里的旅程

NASA工程师已成功折叠、打包好詹姆斯·韦伯空间望远镜遮光罩,百万英里(约150万公里)之旅在今年晚些时候启程。 遮光罩为网球场大小五层菱形结构,经过专门设计后可在望远镜两侧折叠,满足运载工具——阿丽亚娜(Ariane)5号火箭的要求。加利福尼亚雷东多海滩诺斯罗普·格鲁曼公司已完成折叠工作,遮光罩将一直保持这种紧凑结构直至发射完成,韦伯空间望远镜将在太空中度过数日。 遮光罩旨在保护望远镜光学元件视野不受任何干扰热源影响,它是韦伯最关键、最复杂组件之一。由于韦伯是红外望远镜,因此其镜面和传感器需要保持极低温度以检测来自宇宙中遥远物体的微弱热信号。 詹姆斯·韦伯空间望远镜遮光罩两侧被垂直提起以准备折叠防晒层。 来源:NASA/ Chris Gunn 在太空中,遮光罩一侧将始终反射来自太阳、地球和月球光及背景热源。热模型表明,最外层的最高温度为383开氏度(华氏约230度)。遮光罩另一侧始终面向深空,最冷表层模拟最低温为36开氏度(华氏约394度)。 望远镜遮阳板完全展开后几乎达70英尺乘47英尺(21米乘14米)。当装载火箭前,遮光罩需折叠后与望远镜其他设备整合进非常狭窄的区域,以适合火箭整流罩内部直径18英尺(5.4米)的有限空间。 “折叠网球场尺寸的遮光罩无例可循,但与打包降落伞相类似,” 诺斯罗普·格鲁曼公司首席遮光设计工程师Jeff Cheezum。“就像跳伞运动员需要正确包装降落伞,保证其能完美打开并成功返回地面一样,为了将望远镜成功保持在所需工作温度,韦伯需将遮光罩完美折叠,确保能完美打开不变形。” 詹姆斯·韦伯空间望远镜遮光罩正在折叠中,整组技术人员仔细将每一层折成锯齿状,以在望远镜两侧形成类似手风琴状的薄膜叠层。 来源:NASA/Chris Gunn 从尽量平整放置五层面料开始,遮光罩折叠过程长达一个月。在展开状态下,遮光罩类似于多层银色船舶,因此在原本弯曲的表面进行上述步骤是一项较为复杂的工作。之后将这些材料层垂直提起保持在特殊支撑设备上,这样可以固定它们以便折叠。然后一组技术人员仔细将每一层折成锯齿状,在望远镜两侧形成类似手风琴状薄膜叠层。 遮光罩首层厚千分之二英寸(0.005厘米),其余四层仅为千分之一。于团队而言,灵巧地折叠到如此纤薄是一种自我挑战。遮光罩折叠过程需要用特定方法储存90种不同的张紧缆绳,诸如此类组件都要考虑周全以确保部署过程顺利。 随着遮光罩折叠顺利完成,工程团队已为遮光罩在太空中的复杂部署做好准备。发射后首周末,遮光罩在太空中逐渐展开至最大尺寸,然后将五层分开并张紧。展开和张紧程序流程已于2020年12月在地球上完成最后一次测试。 詹姆斯·韦伯空间望远镜遮光罩最终部署和拉伸实验已于2020年12月完成。 来源:NASA/Chris Gunn “回想一下;我们希望部署的遮光罩能够达到特定形状从而获得所需性能。设计整个折叠过程时都考虑到了这点。我们每次须以相同的方式干净且仔细地折叠以确保完全按照我们想要的方式进行展开。”位于马里兰州格林贝尔特NASA戈达德太空飞行中心首席遮光工程师James Cooper说。 例如,折叠过程中最复杂的操作之一——薄膜堆放对齐。遮光罩每一层有意布置数百个孔,可以在遮光罩完全展开时避免光和热传递到望远镜光学元件上。折叠过程中必须将这些孔排成一列,以便韦伯技术人员可以将“销钉”插入每个薄膜堆的孔中。发射时,107个“销钉”或薄膜释放装置会紧固遮光罩层,但一旦望远镜进入太空则解开以伸展遮光罩。 “整个过程必须有条不紊,我们习惯确保所有装置正确对齐。” 诺斯罗普·格鲁曼公司机械工程负责人Marc Roth说:“我们团队已历经多个培训周期,在此过程中不断学习以往经验,并最终完成遮光罩折叠。” 未来三个月工程师和技术人员将完成整理和固定打包遮光罩。该过程包括安装薄膜释放装置、索具,固定所有遮光罩线缆和堆放薄膜盖。同时也包括存放遮光罩两条“手臂”——中臂(mid-boom)组件——部署过程中它将使遮光罩水平向外延展,同时安放了使遮光罩保持在某个位置的托盘结构。 詹姆斯·韦伯空间望远镜此前曾在2020年3月部署了主镜。在这张照片中还可以看到其折叠的遮光罩。 来源:诺斯罗普·格鲁曼公司 韦伯运送到南美洲法属圭亚那发射场之前,还将对其进行最后的镜面部署。 韦伯工程团队继续遵照目前疾病控制预防中心、职业安全健康管理局的新冠疫情防护指南开展个人安全防护,包括佩戴口罩和社交疏导。 来源: https://www.nasa.gov/feature/goddard/2021/nasa-s-webb-telescope-packs-its-sunshield-for-a-million-mile-trip

NASA新的可视化技术探究了双黑洞的光曲之舞

NASA新的可视化技术探究了双黑洞的光曲之舞

在NASA的一部新的可视化影片中,一对质量为太阳几百万倍的轨道黑洞进行了催眠式的表演。这部影片描绘了黑洞是如何扭曲和重定向围绕在每个黑洞的热气体漩涡(称为吸积盘)发出的光。 从轨道平面附近看,每个吸积盘都呈现出特有的双峰状。但是,当一个黑洞从另一个黑洞前面经过时,前景黑洞的引力将另一个黑洞转变为快速变化的弧形序列。当来自两个吸积盘的光线在黑洞附近纠结的空间和时间结构中穿行时,这些扭曲就会发生。 探索两个环绕超大质量黑洞的极端引力如何扭曲我们的视野。在这个可视化图中,明亮、炽热、搅动的气体盘环绕着两个黑洞,用红色和蓝色显示,以便更好地追踪光源。红色吸积盘围绕着较大的黑洞运行,它的重量是我们太阳质量的2亿倍,而它较小的蓝色黑洞的质量只有红色黑洞的一半。放大每一个黑洞,就能看到另一个黑洞的多个越来越扭曲的图像。观看视频了解更多信息。 视频来源:NASA’s Goddard Space Flight Center/Jeremy Schnittman and Brian P. Powell “我们看到了两个超大质量黑洞,一个更大的有2亿太阳质量,一个较小的只有另一个黑洞质量的一半,”杰瑞米·施尼特曼(Jeremy Schnittman)说,他是位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心(Goddard Space Flight Center)的天体物理学家。“这是一种双黑洞系统,我们认为这两个黑洞都可以维持吸积盘持续数百万年。” 吸积盘具有不同的颜色,红色和蓝色,以便更容易跟踪光源,但这种选择也反映了现实。温度较高的气体发出的光接近光谱的蓝色端,围绕较小黑洞运行的物质受到更强的引力作用,从而产生更高的温度。对于这些物质,两个吸积盘实际上都以紫外线的形式发出大部分光,蓝色的吸积盘温度略高。 这样的可视化有助于科学家们描绘出极端重力的哈哈镜的迷人结果。这段新的视频在比施尼特曼(Schnittman)制作的早期视频的基础上增加了一倍,该视频从不同角度展示了一个孤独的黑洞。 从侧面看,吸积盘在一侧明显更亮。引力扭曲改变了来自吸积盘不同部分的光路,产生了扭曲的图像。黑洞附近气体的快速运动通过一种叫做多普勒加速的现象改变了吸积盘的亮度——这是爱因斯坦相对论的一种效应,它使旋转向观察者的一侧变亮,而使旋转向观察者的另一侧变暗。 该可视化还显示了一种更微妙的现象,称为相对论像差。当黑洞接近观察者时,黑洞显得更小,而当黑洞远离观察者时,黑洞显得更大。 当从上方观察系统时,这些效应消失了,但出现了新的特征。这两个黑洞都能产生围绕其轨道运行的黑洞的小图像。仔细看,很明显这些图像实际上是侧面视图。为了产生这些图像,来自黑洞的光必须被重定向90度,这意味着我们同时从两个不同的角度(面朝上和边朝上)观察黑洞。 该系统的正面图像突出了小黑洞与其大黑洞的扭曲图像(插图)。为了到达摄像机,较小的黑洞必须将来自红色黑洞的光线弯曲90度。这副图像的吸积盘呈现为一条线,这意味着我们看到的是红色黑洞的侧面——同时也从上面看到它。蓝色吸积盘的二次图像也在最靠近大黑洞的明亮光圈外形成。 图片来源:NASA’s Goddard Space Flight Center/Jeremy Schnittman and Brian P. Powell “这种新的可视化技术的一个引人注目的方面是引力透镜产生的图像的自相似性,”施尼特曼解释说,“放大到每个黑洞,可以看到它的黑洞越来越多扭曲的图像。” 施尼特曼通过计算来自吸积盘的光线在穿过黑洞周围扭曲的时空时所采取的路径,创造了这个可视化影像。在现代台式电脑上,制作电影帧所需的计算需要花费大约十年的时间。于是,施尼特曼与戈达德数据科学家布莱恩·P·鲍威尔(Brian P. Powell)合作,使用NASA气候模拟中心的Discover超级计算机。仅使用Discover的12.9万个处理器中的2%,这些计算花了大约一天的时间。 天文学家希望在不久的未来,他们能侦测到类似此例这种超大质量黑洞系统,在回旋靠近及合并时,所发出的引力波(或称为时空结构上的涟漪)。 参考来源: https://www.nasa.gov/feature/goddard/2021/new-nasa-visualization-probes-the-light-bending-dance-of-binary-black-holes

NASA的罗曼太空望远镜将如何发现孤立的黑洞

NASA的罗曼太空望远镜将如何发现孤立的黑洞

ASA的南希·格蕾丝·罗曼太空望远镜将于本世纪20年代中期发射升空,届时它将为红外宇宙提供一个前所未有的窗口。该任务计划中的一项调查将利用引力的奇特之处来揭示太阳系以外的数千颗新行星。同样的调查还将提供迄今为止最好的机会,首次明确探测到孤零零的小黑洞。当一颗质量超过20个太阳的恒星耗尽其核心的核燃料,并在自身重量的作用下坍塌时,这些天体就被称为恒星质量黑洞。 黑洞具有强大的引力,连光都无法逃脱它们的魔爪。由于黑洞看不见,我们只能通过观察它们对周围环境的影响,间接地找到黑洞。在星系中心发现的超大质量黑洞,其质量是太阳的几百万倍,它们会扰乱附近恒星的轨道,偶尔还会将它们撕碎,造成可见的后果。 但天文学家认为,绝大多数恒星质量的黑洞要轻得多,它们周围没有任何东西可以提示我们它们的存在。罗曼望远镜将通过观察行星的引力如何扭曲遥远的星光来发现整个银河系中的行星,由于恒星质量的黑洞也会产生同样的效果,所以这项任务应该也能找到它们。 这个动画用黑洞说明了引力微透镜的概念。当黑洞从背景恒星的前方经过时,恒星的光线在穿过黑洞周围扭曲的时空时就会发生扭曲。它变成了一个虚拟的放大镜,放大了遥远的背景恒星的亮度。与质量较小的恒星或行星作为透镜对象时不同,黑洞扭曲了时空,以至于明显改变了遥远恒星在天空中的视位置。 视频来源:美国宇航局戈达德航天局;美国宇航局戈达德太空飞行中心/概念图像实验室 “到目前为止,天文学家已经在银河系中发现了大约20个恒星质量的黑洞,但我们都能看到它们的伴星,”巴尔的摩太空望远镜科学研究所(Space Telescope Science Institute)的天文学家凯拉什·萨胡(Kailash Sahu)说。“许多科学家,包括我自己在内,花了数年时间,试图用其他望远镜自自行寻找黑洞。有了罗曼望远镜,这一切都将成为可能。” 制造黑洞 恒星似乎是永恒的灯塔,但每颗恒星天生的燃料供应有限。恒星一生中的大部分时间都在将其中心的氢转化为氦,从而产生巨大的能量。这个过程被称为核聚变,就像一场受控的爆炸–外压和引力之间微妙平衡的拉锯战。 但当恒星的燃料耗尽,核聚变速度减慢时,引力接管,恒星的核心收缩。这种向内的压力加热了核心,并引发了新一轮的核聚变,产生巨大的能量,以至于恒星的外层膨胀。恒星体积膨胀,表面冷却,成为红巨星或超巨星。 最终留下的恒星尸体类型取决于恒星的质量。当类似太阳的恒星燃料耗尽时,它最终会喷射出外层,只留下一个小而热的核心,称为白矮星。白矮星会随着时间的推移而消逝,就像曾经熊熊燃烧的火焰的余烬。我们的太阳还剩下50亿年的燃料。 更大质量的恒星运行温度越高,它们消耗燃料的速度也就越快。在大约8倍于太阳的质量之上,大多数恒星注定要在成为黑洞之前, 死于被称为超新星的灾难性爆炸中。在质量最高的恒星上,恒星可能会跳过爆炸,直接坍塌成黑洞。 这些质量巨大的恒星的核心会坍缩,直到它们的质子和电子挤压在一起形成中子。如果剩余的核心重量小于3倍太阳质量,坍缩就会停止,留下一颗中子星。对于较大的剩余核,即使是中子也无法承受压力,坍塌会继续形成黑洞。 数以百万计的大质量恒星都经历了这个过程,现在以黑洞的形式潜伏在整个银河系中。天文学家认为银河系中应该有大约1亿个恒星质量的黑洞,但我们只有在它们明显影响周围环境的时候才能发现它们。当黑洞周围形成炽热、发光的吸积盘时,或者当他们发现恒星围绕一个巨大但不可见的物体运行时,天文学家可以推断出黑洞的存在。 “罗曼望远镜将彻底改变我们对黑洞的搜索,因为它将帮助我们在附近什么都没有的情况下找到黑洞,”萨胡说。”星系应该到处都是这些物体。” 看不见的东西 罗曼望远镜将主要利用一种叫做引力微透镜的技术来发现太阳系以外的行星。当一个大质量的物体,比如一颗恒星,从我们较近的位置穿过一颗较远的恒星前时,来自较远恒星的光在穿过较近恒星周围扭曲的时空时会发生扭曲。 其结果是,较近的恒星就像一个天然的透镜,将来自背景恒星的光线放大。围绕透镜星运行的行星可以在较小的范围内产生类似的效果。 除了使背景恒星变亮之外,一个更巨大的透镜天体还能使时空扭曲,以至于明显地改变了远处恒星在天空中的位置。这种位置上的变化,被称为天体微透镜,非常小——只有大约一毫秒。这就好比从洛杉矶向纽约看过去,分辨出帝国大厦顶上大约四分之一宽度的小运动。利用罗曼望远镜精湛的空间分辨率来探测如此微小的明显运动——这是一个巨大黑洞的征兆,天文学家将能够限制黑洞的质量、距离和在星系中的运动。 微透镜信号是如此罕见,以至于天文学家需要长时间监测数以亿计的恒星才能捕捉到它们。天文台必须能够极其精确地追踪背景恒星的位置和亮度——这是只有在地球大气层之上才能做到的事情。罗曼望远镜在太空中的位置和巨大的视野将为我们提供迄今为止探测银河系黑洞数量的最佳机会。 “与我们预期的相比,我们在双星系统中发现的恒星质量黑洞具有奇怪的特性,”萨胡说。”它们的质量都是太阳的10倍左右,但我们认为它们的质量范围应该更大,在3到80个太阳质量之间。通过对这些天体进行普查,罗曼望远镜将帮助我们更多地了解恒星的死亡过程。” 南希·格蕾丝·罗曼太空望远镜由位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心管理,参与该项目的还有NASA的喷气推进实验室、南加州的加州理工学院/IPAC、巴尔的摩的太空望远镜科学研究所,以及一个由来自不同研究机构的科学家组成的科学团队。主要的工业合作伙伴是科罗拉多州博尔德的Ball Aerospace and Technologies Corporation、佛罗里达州墨尔本的L3Harris Technologies和加利福尼亚州千橡树的Teledyne Scientific & Imaging。 参考来源: https://www.nasa.gov/feature/goddard/2021/how-nasa-s-roman-space-telescope-will-uncover-lonesome-black-holes

NASA的NICER发现了蟹状星云脉冲星射电脉冲爆发的X射线增强

NASA的NICER发现了蟹状星云脉冲星射电脉冲爆发的X射线增强

一项全球科学合作利用NASA国际空间站上的中子星内部成分探测器(NICER)望远镜的数据,发现了蟹状星云中脉冲星伴随射电爆发的X射线增强。这一发现表明,这些被称为巨型射电脉冲的爆发,释放出的能量远比之前猜测的要多。 NASA的中子星内部成分探测器(NICER)观测显示,蟹状星云脉冲星的随机巨型射电脉冲产生了X射线增强。观看视频了解更多信息。 视频来源:NASA戈达德太空飞行中心 脉冲星是一种快速旋转的中子星,是一颗爆炸后形成超新星的恒星的破碎的、城市大小的核心。一颗年轻的孤立中子星每秒可以旋转数十次,其旋转的磁场可以增强无线电波、可见光、X射线和伽马射线。如果这些光束扫过地球,天文学家就会观察到类似时钟的脉冲发射,并将其归类为脉冲星。 “在已编入目录的2800多颗脉冲星中,蟹状星云脉冲星是仅有的几颗发出巨型射电脉冲的天体之一,这些脉冲零星出现,其亮度可能是常规脉冲的数百倍到数千倍。”位于日本埼玉县和光市的RIKEN先锋研究集群的首席科学家榎户辉扬(Teruaki Enoto)说。”经过数十年的观察,只有蟹状星云脉冲星被证明可以通过频谱其他部分的发射来增强其巨大的射电电脉冲。” 蟹状星云是超新星爆炸产生的六光年宽的碎片云,其中有一颗每秒旋转30次的中子星,在X射线和射电波段是天空中最亮的脉冲星之一。这张哈勃太空望远镜图像的合成图揭示了爆炸中排出的不同气体:蓝色显示中性的氧,绿色显示单电离的硫,红色表示双电离的氧。 影像来源:NASA, ESA, J. Hester and A. Loll (Arizona State University) 这项新的研究将出现在4月9日的《Science》杂志上,现在可以在线获取,该研究分析了有史以来从脉冲星收集的最大数量的同步X射线和无线电数据。它将与这种增强现象相关的观测能量范围扩大了数千倍。 蟹状星云及其脉冲星位于约6500光年外的金牛座,形成于一颗超新星,其光线于1054年7月到达地球。这颗中子星每秒旋转30次,在X射线和射电波长下,它是天空中最亮的脉冲星之一。 在2017年8月至2019年8月期间,榎户辉扬和他的同事们利用NICER在X射线中反复观测蟹状星云脉冲星,X射线的能量高达1万电子伏特,即可见光的数千倍。在NICER观测的同时,该团队还使用日本的两台地基射电望远镜中的至少一台–鹿岛宇宙技术中心的34米天线和日本宇宙航空研究开发机构宇田深空中心的64米天线对该天体进行了研究,这两台天线的工作频率均为2千兆赫。 在2017年至2019年期间,NASA的中子星内部成分探测器(NICER)和日本的射电望远镜同时研究了蟹状星云脉冲星。在这张仅代表NICER观测13分钟的可视化图片中,数以百万计的X射线被绘制成相对于脉冲星的旋转相位,其中心是最强的射电发射。为了清晰起见,图中显示的是两次完整的旋转。当脉冲星光束扫过我们的视线时,它们会在每次旋转中产生两个峰值,较亮的那个峰值与更多的巨型射电脉冲有关。NICER的数据首次显示,与这些事件相关的X射线发射略有增加。 影像来源:NASA’s Goddard Space Flight Center/Enoto et al. 2021 联合数据集有效地为研究人员提供了近一天半的X射线和无线电覆盖时间。总的来说,他们捕捉到了370万次脉冲星自转的活动,捕获了大约26000个巨型射电脉冲。 巨型射电脉冲爆发得很快,在百万分之一秒内达到峰值,并且不可预测地发生。然而,当它们发生时,却与规律的时钟脉动一致。 NICER能在在100纳秒之内记录下其探测到的每一个X射线的到达时间,但望远镜的计时精度并不是它在这项研究中的唯一优势。 “NICER观测明亮X射线源的能力几乎是脉冲星及其星云亮度总和的四倍,”NASA位于马里兰州格林贝尔特的戈达德太空飞行中心的项目科学负责人扎文·阿尔祖马尼亚(Zaven Arzoumanian)说。”因此,这些观测结果基本上没有受到堆积的影响(堆积指的是探测器将两束或两束以上的X射线视为一个单一事件),而其他一些问题则使早期的分析更加复杂。” 榎户辉扬的团队综合了所有与巨型射电脉冲相吻合的X射线数据,现了与之同步发生的X射线增强的幅度约为4%。这与2003年发现的可见光增加3%的现象非常相似。与蟹状星云脉冲星的常规脉冲和巨型脉冲之间的亮度差异相比,这些变化非常小,为理论模型的解释提供了挑战。 这些X射线的增强表明,巨型射电脉冲是产生横跨电磁波谱(从无线电到X射线)的发射的基本过程的一种表现。而由于X射线的冲击力是无线电波的数百万倍,即使是适度的增加也代表着巨大的能量贡献。研究人员得出的结论是,与巨型射电脉冲相关的总发射能量比之前仅从无线电和光学数据中估计的高出几十到几百倍。 “我们仍然不知道脉冲星是如何或在哪里产生它们复杂而广泛的辐射,令人欣慰的是,我们为这些迷人天体的多波长谜题做出了贡献。”榎户辉扬说。 NICER是美国宇航局探索计划中的机遇号天体物理学任务,利用太阳物理学和天体物理学科学领域的创新、精简和高效的管理方法,为来自太空的世界级科学研究提供频繁的飞行机会。NASA的空间技术任务理事会支持该任务的SEXTANT部分,展示基于脉冲星的航天器导航。 参考来源: https://www.nasa.gov/feature/goddard/2021/nasa-s-nicer-finds-x-ray-boosts-in-the-crab-pulsar-s-radio-bursts

哈勃望远镜重访面纱星云

哈勃望远镜重访面纱星云

This image taken by the NASA/ESA Hubble Space Telescope revisits the Veil Nebula, which was featured in a previous Hubble image release. In this image, new processing techniques have been applied, bringing out fine details of the nebula’s delicate threads and filaments of ionized gas. To create this colorful image, observations were taken by Hubble’s Wide Field Camera 3 instrument using five different filters. The new post-processing methods have further enhanced details of emissions from doubly ionized oxygen (seen here in blues), ionized hydrogen, and ionized nitrogen (seen here in reds). The Veil Nebula lies around 2,100 light-years from Earth in the constellation of Cygnus (the Swan), making it a relatively close neighbor in astronomical terms. Only a small portion of the nebula was captured…

NASA OSIRIS-REx的最后一次小行星观测运行情况

NASA OSIRIS-REx的最后一次小行星观测运行情况

美国宇航局的OSIRIS-REx任务即将发现它在去年秋天的样本收集活动中在小行星本努(Bennu)表面造成的混乱程度。4月7日,OSIRIS-REx航天器将与本努进行最后一次近距离接触,它将进行最后一次飞越,捕捉小行星表面的图像。在执行飞越时,航天器将从约2.3英里(3.7公里)的距离观察本努——这是自2020年10月20日 “即厨即走 “样品收集活动以来最接近的一次。 在本努的表面受到样品采集事件的严重干扰后,OSIRIS-REx团队决定增加这最后一次飞越。在着陆过程中,航天器的取样头沉入小行星表面1.6英尺(48.8厘米),并同时发射了加压的氮气。航天器的推进器也在后退燃烧过程中调动了大量的表面物质。由于本努的引力非常弱,航天器的这些不同的力量对采样点产生了巨大的影响——在这个过程中发射了许多该地区的岩石和大量的尘埃。这次对贝努的最后一次飞越将使飞行任务小组有机会了解航天器与本努表面的接触如何改变了采样点及其周围区域。 这次单次飞越将模仿2019年任务详细调查阶段进行的观测序列之一。OSIRIS-REx将对本努进行5.9小时的成像,这刚好超过小行星的一个完整的旋转周期。在这个时间段内,航天器的PolyCam成像仪将获得本努的北半球和南半球及其赤道区域的高分辨率图像。然后,该团队将把这些新图像与2019年期间获得的该小行星先前的高分辨率图像进行比较。 这幅艺术家的概念图展示了美国宇航局的奥OSIRIS-REx计划在4月7日最后一次飞越本努小行星时的飞行路线。 影像来源:NASA/Goddard/University of Arizona 该航天器的大多数其他科学仪器也将在飞越期间收集数据,包括MapCam成像仪、OSIRIS-REx热发射光谱仪(OTES)、OSIRIS-REx可见光和红外光谱仪(OVIRS)和OSIRIS-REx激光高度计(OLA)。使用这些仪器将使团队有机会评估航天器上每个科学仪器的当前状态,因为在样品收集活动期间,这些仪器都被灰尘覆盖。了解仪器的健康状况也是NASA评估样本送到地球后可能延长任务机会的一部分。 在OSIRIS-REx飞越本努之后,飞越的数据需要几天时间才能下传到地球。数据下传后,团队将检查图像,了解OSIRIS-REx是如何扰动小行星表面物质的。此时,该团队还将能够评估科学仪器的性能。 OSIRIS-REx将在小行星本努附近停留到5月10日,届时任务将进入返回巡航阶段,开始为期两年的返回地球之旅。当它接近地球时,航天器将抛出样品返回舱(SRC),其中包含从本努收集的岩石和尘埃。然后,SRC将穿越地球大气层,于2023年9月24日在降落伞下降落在犹他州测试和训练场。 一旦样品回收,返回舱将被运送到位于休斯顿的美国宇航局约翰逊航天中心的管理设施,在那里,样品将被取出,分发到世界各地的实验室,使科学家们能够研究太阳系和地球作为一个宜居星球的形成。 美国宇航局位于马里兰州格林贝尔特的戈达德太空飞行中心为OSIRIS-REx提供整体任务管理、系统工程以及安全和任务保障。亚利桑那大学图森分校的丹特-劳雷塔是首席研究员,亚利桑那大学还领导科学团队和任务的科学观测规划和数据处理。位于丹佛的洛克希德-马丁航天公司建造了该航天器并提供飞行操作。戈达德公司和KinetX航空航天公司负责OSIRIS-REx航天器的导航工作。OSIRIS-REx是美国航天局新前沿项目中的第三次任务,该方案由美国航天局设在阿拉巴马州亨茨维尔的马歇尔空间飞行中心为该局设在华盛顿的科学任务局管理。 参考来源: https://www.nasa.gov/feature/goddard/2021/nasa-osiris-rexs-final-asteroid-observation-run

NASA的TESS在年轻恒星的星流中发现了新的世界

NASA的TESS在年轻恒星的星流中发现了新的世界

通过美国宇航局的凌日系外行星勘测卫星(TESS)的观测,一个国际天文学家团队发现了三个比地球大的热星球,围绕着一个年轻得多的名为TOI 451的恒星运行。该系统位于最近发现的双鱼座-波江座星流中,这是一组年龄不到我们太阳系3%的恒星,横跨了三分之一的天空。 这张插图勾勒出TOI 451的主要特征,这是一个位于波江座400光年之外的三重行星系统。 来源:美国宇航局戈达德太空飞行中心 这些行星是在2018年10月至12月间拍摄的TESS照片中发现的。对TOI 451及其行星的低阶研究包括2019年和2020年使用NASA的斯皮策太空望远镜(现已退役)以及许多地面设施进行的观测。NASA近地天体广域红外探测卫星(NEOWISE)在2009年到2011年期间收集的红外数据显示,该系统保留着由尘埃和岩石碎片组成的冷盘。其他观察显示,TOI 451可能有两个遥远的恒星伴星,在远离行星的地方相互环绕。 “这个系统检查了天文学家的许多情况,”领导这项研究的新罕布什尔州汉诺威达特茅斯学院(Dartmouth College)物理学和天文学助理教授伊丽莎白·牛顿(Elisabeth Newton)说,“它只有1.2亿年的历史,距离我们只有400光年,我们可以对这个年轻的行星系统进行详细的观察。而且因为有三颗行星的大小是地球的2到4倍,它们为测试行星大气如何演化的理论提供了特别有希望的目标。” 一篇报道这一发现的论文发表在1月14日的《天文学杂志》上,并可在网上查阅。 当星系的引力将星团或矮星系撕裂时,就会形成恒星流。单个恒星沿着星团最初的轨道向外移动,形成一个拉长的星团,并逐渐分散。 2019年,维也纳大学(University of Vienna)斯特凡·梅因格斯特(Stefan Meingast)领导的一个团队使用了欧洲航天局(European Space Agency)盖亚(Gaia)任务的数据,发现了双鱼座-波江座星流,该星流以恒星密度最大的星座命名。星流横跨14个星座,大约有1300光年长。然而,最初确定的星流年龄比我们现在认为的要久远得多。 2019年晚些时候,由纽约哥伦比亚大学杰森·柯蒂斯(Jason Curtis)领导的研究人员分析了数十个星流的TESS数据。年轻的恒星比年老的恒星旋转得更快,而且它们往往有明显的恒星黑子——像太阳黑子一样的黑暗、寒冷的区域。当这些黑点在我们的视野之内或之外旋转,它们会在TESS可以测量的恒星亮度上产生微小的变化。 TESS的测量结果显示了压倒性的证据,证明了恒星黑子的存在以及恒星间的快速旋转。根据这个结果,柯蒂斯和他的同事们发现这个星系团只有1.2亿年的历史——与著名的昴宿星团相似,比之前估计的年龄小8倍。质量、年轻和靠近双鱼座-波江座星流使它成为研究恒星和行星形成和进化的令人兴奋的基础实验室。 “多亏TESS几乎覆盖了整个天空,我们在发现这条星流的时候就可以通过测量来寻找围绕这条流成员的行星,”论文的合著者之一、NASA系外行星档案馆的科学副主管杰西·克里斯蒂安森(Jessie Christiansen)说,该档案馆是一个研究太阳系以外世界的设施,由加州帕萨迪纳的加州理工学院管理。“在未来的几年里,TESS的数据将继续让我们突破我们对系外行星及其系统的认知极限。” 年轻的恒星TOI 451,也就是天文学家熟知的CD-38 1467,位于400光年之外的波江座。它的质量是太阳的95%,但它比太阳小12%,温度略低,释放的能量也少35%。TOI 451每5.1天自转一周,比太阳快5倍多。 TESS通过寻找凌日现象来发现新的世界,凌日现象是一颗行星从其恒星前面经过时发生的轻微而有规律的变暗现象。三颗行星的凌日现象在TESS的数据中都很明显。牛顿的研究团队从斯皮策望远镜获得的测量数据支持了TESS的发现,并帮助排除了其他可能的解释。后续观测来自拉斯坎布瑞斯天文台——一个总部设在加州戈莱塔的全球望远镜网络——和澳大利亚珀斯系外行星调查望远镜。 即使是TOI 451最遥远的行星,其轨道距离也比水星离太阳的距离近三倍,所以所有这些世界都非常热,正如我们所知,不适合生命生存。温度估计范围从最内层的2200华氏度(1200摄氏度)到最外层的840华氏度(450摄氏度)。 TOI 451 b轨道每1.9天运行一次,大约是地球大小的1.9倍,估计质量是地球的2到12倍。下一颗行星,TOI 451 c,每9.2天绕轨道运行一圈,大约是地球的3倍,质量是地球的3到16倍。最大最远的行星TOI 451 d,每16天绕恒星一周,是我们行星的4倍大,质量在地球的4到19倍之间。 天文学家预计,尽管它们附近的恒星散发着强烈的热量,但像这样大的行星仍能保留大部分大气层。当一个行星系统达到TOI 451的年龄时,大气如何演化的不同理论预测了各种性质。观察穿过这些行星大气层的星光,为研究这一阶段的发展提供了机会,并有助于约束目前的模型。 双鱼座-波江座星流横跨1300光年,横跨14个星座和三分之一的天空。黄点表示已知或可疑成员的位置,并圈出TOI 451。TESS的观测显示,这条星流大约有1.2亿年的历史,与位于金牛座的著名的昴宿星群(左上)相当。 来源:美国宇航局戈达德太空飞行中心 “通过测量以不同波长穿透行星大气的星光,我们可以推断其化学成分以及云层或高空烟雾的存在,”位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心的天体物理学家埃莉莎·昆塔纳说。“TOI 451的行星为哈勃和即将到来的詹姆斯·韦伯太空望远镜的研究提供了极好的目标。” WISE的观测显示,该系统在波长为12微米和24微米的红外光下异常明亮,而人眼是看不见红外光的。这表明了碎片盘的存在,在那里岩石状的小行星撞击并将自己磨成尘埃。虽然牛顿和她的团队无法确定圆盘的范围,但他们设想它是一个由岩石和尘埃组成的弥散环,其中心距离恒星的距离就像木星距离太阳的距离一样远。 研究人员还研究了一颗微弱的邻近恒星,它出现在TESS图像中,距离TOI 451大约两个像素。根据盖亚的数据,牛顿的团队确定这颗恒星是一个受引力约束的伴星,它离TOI 451太远,它发出的光需要27天才能到达那里。事实上,研究人员认为这个伴星很可能是由两颗M型矮星组成的双星系统,每颗恒星的质量都是太阳的45%,释放的能量仅有太阳的2%。 TESS是美国宇航局的天体物理探索任务,由麻省理工学院领导和运营,由美国宇航局戈达德太空飞行中心管理。其他合作伙伴包括弗吉尼亚州福尔斯彻奇的诺斯罗普·格鲁曼公司;美国宇航局位于加州硅谷的艾姆斯研究中心;马萨诸塞州剑桥的哈佛和史密森尼天体物理中心;麻省理工学院的林肯实验室;以及巴尔的摩的太空望远镜科学研究所。全世界有十多所大学、研究机构和天文台参与了这项任务。 位于南加州的美国宇航局喷气推进实验室为位于华盛顿的美国宇航局科学任务理事会管理近地天体广角红外线探测望远镜(Near-Earth Object Wide-field Infrared Survey Explorer, NEOWISE)。科罗拉多州博尔德的鲍尔航空航天技术公司建造了这艘飞船。科学数据处理工作在帕萨迪纳加州理工学院的IPAC进行。加州理工学院为美国宇航局管理喷气推进实验室。 来源: https://www.nasa.gov/feature/goddard/2021/nasa-s-tess-discovers-new-worlds-in-a-river-of-young-stars

哈勃望远镜发现了星际间的相互作用

哈勃望远镜发现了星际间的相互作用

The life of a planetary nebula is often chaotic, from the death of its parent star to the scattering of its contents far out into space. Captured here by the NASA/ESA Hubble Space Telescope, ESO 455-10 is one such planetary nebula, located in the constellation of Scorpius (The Scorpion). The oblate shells of ESO 455-10, previously held tightly together as layers of its central star, not only give this planetary nebula its unique appearance, but also offer information about the nebula. Seen in a field of stars, the distinct asymmetrical arc of material over the north side of the nebula is a clear sign of interactions between ESO 455-10 and the interstellar medium. The interstellar medium is the material such as diffuse gas between star…