詹姆斯·韦伯太空望远镜拍摄到了宇宙狼蛛

詹姆斯·韦伯太空望远镜拍摄到了宇宙狼蛛

在这张横跨340光年的拼接图像中,韦伯的近红外相机(NIRCam)以全新的视角展示了狼蛛星云的恒星形成区域,其中包括数以万计从未见过的年轻恒星,这些恒星以前被宇宙尘埃笼罩。最活跃的区域似乎闪烁着巨大的年轻恒星,呈淡蓝色。 影像来源:NASA, ESA, CSA, STScI, Webb ERO Production Team 很久以前,一个宇宙创造的故事展开了:数千颗从未见过的年轻恒星被发现在一个名为剑鱼座30号星云的恒星孕育区,由NASA的詹姆斯·韦伯太空望远镜拍摄。在之前的望远镜图像中,狼蛛星云因其图像中出现的尘埃细丝而被昵称为狼蛛星云,长期以来,该星云一直是研究恒星形成的天文学家的最爱。除了年轻的恒星,韦伯还揭示了遥远的背景星系,以及星云气体和尘埃的详细结构和组成。 狼蛛星云位于大麦哲伦星云星系中,距离我们只有161,000光年,是本星系群中最大、最亮的恒星形成区,也是距离我们银河系最近的星系。它是已知最热、最大质量恒星的所在地。天文学家将韦伯的三台高分辨率红外仪器聚焦在狼蛛星云上。用韦伯的近红外相机 (NIRCam) 观察,该地区就像一个穴居狼蛛的家,布满了蛛丝。位于NIRCam图像中心的星云空腔被大量年轻恒星发出的炽热辐射挖空,这些恒星在图像中闪耀着淡蓝色的光芒。只有最稠密的星云周围区域能够抵御这些恒星强大的恒星风的侵蚀,形成似乎指向星团的柱子。这些柱子包含正在形成的原恒星,这些原恒星最终将从它们的尘埃茧中出现,并依次形成星云。 韦伯的近红外光谱仪(NIRSpec)拍摄到一颗年轻恒星正在这么做。天文学家先前认为这颗恒星可能更老一些,并且已经在清除其周围的空腔。然而,NIRSpec显示,这颗恒星才刚刚开始从它的柱子中出现,并且仍然保持着一个绝缘的尘埃云围绕着它。如果没有韦伯在红外波长上的高分辨率光谱,就不可能揭示这一恒星形成过程。 当在韦伯中红外仪器(MIRI)检测到的较长红外波长下观察时,该区域呈现出不同的外观。炽热的恒星逐渐消失,而较冷的气体和尘埃则发光。在恒星孕育云中,光点表明嵌入的原恒星仍在增加质量。虽然较短波长的光被星云中的尘埃颗粒吸收或散射,因此永远不会到达韦伯而被探测到,但较长的中红外波长会穿透尘埃,最终揭示了一个以前看不见的宇宙环境。 在中红外仪器(MIRI)捕捉到的较长波长的光中,韦伯聚焦于中心星团周围的区域,揭示了狼蛛星云的一个非常不同的视图。在这种波长的光中,星团中年轻的炽热恒星的亮度逐渐减弱,发光的气体和尘埃出现。丰富的碳氢化合物照亮了尘埃云的表面,如图中蓝色和紫色所示。 影像来源:NASA, ESA, CSA, STScI, Webb ERO Production Team 狼蛛星云对天文学家感兴趣的原因之一是,该星云的化学成分与在宇宙“宇宙正午”观察到的巨大恒星形成区域相似,当时宇宙只有几十亿年,恒星形成处于高峰期。我们银河系中的恒星形成区域并没有像狼蛛星云那样以同样的速度产生恒星,并且具有不同的化学成分。这使得狼蛛成为最接近(即最容易详细看到)宇宙达到辉煌的正午时发生的事情的例子。韦伯将为天文学家提供机会,将狼蛛星云中恒星形成的观测结果与望远镜从宇宙正午时期对遥远星系的深度观测结果进行比较和对比。 尽管人类已经观察了数千年的恒星,但恒星形成的过程仍然有许多谜团——其中许多是因为我们之前无法获得恒星孕育区厚厚云层背后发生的事情的清晰图像。韦伯已经开始揭示一个从未见过的宇宙,并开始重写恒星诞生的故事。 詹姆斯·韦伯太空望远镜是世界上首屈一指的太空科学天文台。韦伯将解开我们太阳系中的谜团,展望其他恒星周围的遥远世界,探索我们宇宙的神秘结构和起源以及我们在其中的位置。韦伯是由NASA及其合作伙伴 ESA和CSA领导的一项国际计划。 参考来源: https://www.nasa.gov/feature/goddard/2022/a-cosmic-tarantula-caught-by-nasa-s-webb

詹姆斯·韦伯太空望远镜第一批全彩图像可听化合集

詹姆斯·韦伯太空望远镜第一批全彩图像可听化合集

1、Webb’s Cosmic Cliffs Sonification 2、Webb’s Cosmic Cliffs Sonification: Sky 3、Webb’s Cosmic Cliffs Sonification: Mountains 4、Webb’s Cosmic Cliffs Sonification: Stars 5、Webb’s Southern Ring Nebula Sonification 6、Webb’s Southern Ring Nebula Sonification: Near-Infrared 7、Webb’s Southern Ring Nebula Sonification: Mid-Infrared 8、Webb’s Exoplanet WASP-96 b Sonification

詹姆斯·韦伯太空望远镜的第一批全彩图像,数据被转化为声音

詹姆斯·韦伯太空望远镜的第一批全彩图像,数据被转化为声音

有一种全新的、沉浸式的方式,可以通过声音探索NASA詹姆斯·韦伯太空望远镜的首批全色红外图像和数据。听众可以进入船底座星云中宇宙悬崖的复杂声景,探索描绘南环星云的两幅图像的对比色调,并识别热气巨行星WASP-96 b透射光谱中的各个数据点。“音乐进入了我们的情感中心。”多伦多大学的音乐家和物理学教授马特·拉索说。“我们的目标是通过声音让韦伯的图像和数据易于理解——帮助听众创建自己的心理图像。” 一个由科学家、音乐家和盲人和视障人士组成的团队,在韦伯任务和NASA学习宇宙的支持下,致力于调整韦伯的数据。 韦伯的宇宙悬崖可听化 影像来源:图片:NASA、ESA、CSA 和 STScI; 无障碍制作:NASA、ESA、CSA、STScI 和 Kimberly Arcand (CXC/SAO)、Matt Russo 和 Andrew Santaguida(系统声音)、Quyen Hart (STScI)、Claire Blome (STScI) 和 Christine Malec(顾问)。 NASA韦伯望远镜拍摄的船底星云宇宙悬崖的近红外图像,已被映射为一段交响乐般的声音。音乐家们为星云中半透明、薄雾状的区域和非常密集的气体和尘埃区域分配了独特的音符,最终形成了嗡嗡声的音景。 可听化处理从左到右扫描图像。音轨充满活力,内容丰富,代表了这个巨大的气态空洞中的细节,看起来像一座山脉。图像上半部分的气体和尘埃以蓝色色调和有风的、类似无人机的声音表示。图像的下半部分以橙红色和红色的阴影表示,构图更清晰、旋律更优美。 图像中的光线越亮,声音越大。光的垂直位置也决定了声音的频率。例如,图像顶部附近的明亮灯光听起来声音大而高,但靠近图像中间位置的强光则声音大而音调低。图像中出现在较低位置的较暗、被尘埃遮蔽的区域,用较低的频率和更清晰、不失真的音符来表示。 韦伯的南环星云可听化 影像来源:图片:NASA、ESA、CSA 和 STScI; 无障碍制作:NASA、ESA、CSA、STScI 和 Kimberly Arcand (CXC/SAO)、Matt Russo 和 Andrew Santaguida(系统声音)、Quyen Hart (STScI)、Claire Blome (STScI) 和 Christine Malec(顾问)。 美国宇航局的韦伯望远镜捕获了南环星云近红外光(左)和中红外光(右)的两幅图像————每幅图像都经过了声音处理。 在这个可听化处理中,图像中的颜色被映射到声音的音调——光的频率被直接转换成声音的频率。近红外光由轨道开始处的较高频率范围表示。中途,音符发生变化,整体变得较低,以反映中红外包含更长波长的光。 仔细听15秒和44秒。这些音符与近红外和中红外图像的中心对齐,恒星出现在“动作”中心的位置。在轨道开始的近红外图像中,只有一颗恒星清晰可见,声音更大。在音轨的后半部分,听众会在高音之前听到一个低音,这表示在中红外光中检测到两颗恒星。较低的音符代表形成这个星云较红的恒星,第二个音符代表看起来更亮更大的恒星。 韦伯的系外行星WASP-96b可听化 影像来源:图片:NASA、ESA、CSA 和 STScI; 无障碍制作:NASA、ESA、CSA、STScI 和 Kimberly Arcand (CXC/SAO)、Matt Russo 和 Andrew Santaguida(系统声音)、Quyen Hart (STScI)、Claire Blome (STScI) 和 Christine Malec(顾问)。 NASA的韦伯望远镜观测到了热气体巨系外行星WASP-96 b的大气特征——其中包含水的清晰特征——由此产生的透射光谱的各个数据点被转化为声音。 可听化从左到右扫描光谱。从下到上,Y轴的范围表示遮挡的光从少到多。X轴的范围从左侧的0.6微米到右侧的2.8微米。每个数据点的音高对应于每个点所代表的光的频率。波长越长,光的频率越低,则听到较低的音调。体积表示在每个数据点中检测到的光量。 四个水特征由水滴落下的声音表示。这些声音简化了数据——水被辨别为具有多个数据点的特征。声音仅与数据中的最高点一致。 这些音轨首先支持盲人和低视力的听众,但其设计旨在吸引任何收听者。“这些合成声音提供了一种不同的方式来体验韦伯第一批数据中的详细信息。类似于书面描述是视觉图像的独特翻译,可听化处理也通过将颜色、亮度、恒星位置或水吸收特征等信息编码为声音来翻译视觉图像,”位于马里兰州巴尔的摩的太空望远镜科学研究所的高级教育和外联科学家昆恩·哈特说。“我们的团队致力于确保所有人都能接触到天文学。” 该项目与“路缘坡效应”类似,这是一项支持各种行人的无障碍要求。马萨诸塞州剑桥钱德拉X射线中心的可视化科学家金伯利·阿坎德解释说:“当削减路障时,首先使用轮椅的人会受益,同时拄着拐杖走路的人和推着婴儿车的父母也会受益。”阿尔坎德领导了NASA最初的数据可听化项目,现在代表NASA的“学习宇宙”从事这项工作。“我们希望这些可听化能够影响到同样广泛的观众。” 阿尔坎德领导的一项调查的初步结果显示,失明或视力低下的人,以及有视力的人都报告说,他们通过聆听了解了一些有关天文图像的信息。参与者还分享了与他们产生深刻共鸣的听觉体验。“受访者的反应各不相同——从敬畏到有点紧张,”阿尔坎德继续说道。“一个重要的发现来自视力正常的人。他们报告说,这种经历帮助他们了解盲人或视力低下的人如何以不同方式获取信息。” 这些音轨不是在太空中记录的真实声音。相反,鲁索和他的合作者、音乐家安德鲁·桑塔吉达将韦伯的数据映射为声音,精心创作音乐,以准确地呈现团队希望听众关注的细节。从某种程度上说,这些声音处理就像现代舞或抽象绘画——它们将韦伯的图像和数据转换为一种新的媒介,以吸引和激励听众。 克里斯汀·马拉克是盲人和低视力社区的一员,她也支持这个项目,她说她用多种感官体验了这些音轨。“当我第一次听到可听化时,它以一种发自内心的、情感化的方式打动了我,我想象着有视力的人在仰望夜空时的感受。” 这些可听化还有其他深刻的好处。“我想了解声音的每一个细微差别和每一种乐器的选择,因为这主要是我对图像或数据的体验,”马拉克继续说道。总的来说,该团队希望对韦伯的数据进行可听化处理,帮助更多的听众感受到与宇宙的更紧密联系,并激励每个人关注天文台即将到来的天文发现。 詹姆斯·韦伯太空望远镜是世界上首屈一指的太空科学天文台。韦伯将解开我们太阳系中的谜团,展望其他恒星周围的遥远世界,探索我们宇宙的神秘结构和起源以及我们在其中的位置。韦伯是由NASA及其合作伙伴 ESA和CSA领导的一项国际计划。 这些可听化是NASA的宇宙学习计划和詹姆斯·韦伯太空望远镜合作的结果。钱德拉X射线中心(CXC)作为NASA的学习伙伴,领导数据可听化处理。隶属于韦伯任务的科学专家提供他们在韦伯观测、数据和目标方面的专业知识。 NASA的学习宇宙是NASA科学激活计划的一部分,由NASA总部的科学任务理事会负责。科学激活计划将NASA科学专家、真实内容和经验以及社区领袖联系起来,以激活思维并促进对我们的世界和世界以外的更深入理解。通过与科学和科学背后的专家的直接联系,NASA的学习宇宙提供资源和经验,使青年、家庭和终身学习者能够探索科学中的基本问题,体验科学是如何进行的,并自己发现宇宙。 NASA的宇宙学习材料基于NASA根据合作协议支持的工作,根据编号NNX16AC65A合作协议授予太空望远镜科学研究所,与加州理工学院/IPAC、天体物理中心|哈佛和史密森尼和喷气推进实验室合作。 参考来源: https://www.nasa.gov/feature/goddard/2022/nasa-webb-s-first-full-color-images-data-are-set-to-sound

哈勃望远镜俯瞰着太空的云景

哈勃望远镜俯瞰着太空的云景

This celestial cloudscape from the NASA/ESA Hubble Space Telescope captures the colorful region in the Orion Nebula surrounding the Herbig-Haro object HH 505. Herbig-Haro objects are luminous regions surrounding newborn stars that form when stellar winds or jets of gas spew from these infant stars creating shockwaves that collide with nearby gas and dust at high speeds. In the case of HH 505, these outflows originate from the star IX Ori, which lies on the outskirts of the Orion Nebula around 1,000 light-years from Earth. The outflows themselves are visible as gracefully curving structures at the top and bottom of this image. Their interaction with the large-scale flow of gas and dust from the core of the nebula distorts them into sinuous curves. Captured with…

费米证实恒星残骸是极端宇宙粒子的来源

费米证实恒星残骸是极端宇宙粒子的来源

天文学家长期以来一直在寻找银河系中能量最高的质子的发射地点。现在,一项研究使用了NASA费米伽玛射线太空望远镜12年的数据,证实了一个超新星遗迹就是这样的地方。 探索天文学家如何找到超新星遗迹,该遗迹发射的质子能量是地球上最强大的粒子加速器的10倍。 影像来源:NASA戈达德航天飞行中心 费米已经证明,爆炸恒星的冲击波将粒子提升到与光速相当的速度。这些粒子被称为宇宙射线,主要以质子的形式存在,但也可以包括原子核和电子。因为它们都带有电荷,所以当它们在我们银河系的磁场中快速移动时,它们的路径变得混乱。由于我们无法再分辨它们来自哪个方向,这就掩盖了它们的出生地。但当这些粒子与超新星残骸附近的星际气体碰撞时,它们会产生一种伽马射线——这是能量最高的光。 “理论家们认为银河系中能量最高的宇宙线质子能达到100亿电子伏,或者PeV能量。”麦迪逊威斯康星大学物理学助理教授方柯(Ke Fang)说。“它们的来源,也就是我们所说的拍电子伏特宇宙线加速器(PeVatrons),其确切性质一直难以确定。” 这些粒子被混沌磁场困住,反复穿越超新星的冲击波,每次穿越都会获得速度和能量。最终,超新星残骸再也抓不住它们,它们飞快地飞向星际空间。 PeV质子的能量大约是世界上最强大的粒子加速器——大型强子对撞机的10倍,即将完全逃离银河系。 天文学家已经确认了一些可疑的PeVatron,其中一个位于我们银河系的中心。自然地,超新星遗迹是候选名单中的首选。然而,在大约300个已知遗迹中,只有少数被发现会发射足够高能量的伽马射线。 一个特别的恒星残骸引起了伽马射线天文学家的极大关注。它被称为G106.3+2.7,是一个彗星状的云,位于约2,600光年之外的仙王座。一颗明亮的脉冲星覆盖在超新星遗迹的北端,天文学家认为这两个天体是在同一次爆炸中形成的。 费米的主要仪器——大面积望远镜,从残骸的延伸尾部内探测到了十亿电子伏(GeV)伽马射线。(相比之下,可见光的能量大约为2到3GeV之间。)亚利桑那州南部弗雷德·劳伦斯·惠普尔天文台的高能辐射成像望远镜阵列系统(VERITAS)记录了来自同一区域的更高能量伽马射线。墨西哥的高海拔水切伦科夫伽马射线天文台和中国的西藏AS-γ实验阵列都从费米和VERITAS探测的区域探测到了能量为100万亿电子伏(TeV)的光子。 该序列比较了三个能量范围内的费米结果。脉冲星J2229+6114是超新星遗迹G106.3+2.7(用绿色标出)北端顶部的明亮光源。在每个能量范围内,序列首先显示伽马射线的数量,然后与背景模型的预期值进行比较。较亮的颜色表示伽马射线数量较多或过量。在最高能量下,当超新星冲击波加速的质子撞击附近的气体云时,产生了一种新的伽马射线源。 影像来源:NASA/Fermi/Fang et al. 2022 “这个物体已经引起了人们相当大的兴趣一段时间了,但要把它冠以PeVatron的称号,我们必须证明它在加速质子。”华盛顿美国天主教大学和马里兰州格林贝尔特NASA戈达德航天飞行中心的合著者亨利克·弗莱施哈克解释道。“问题在于,加速到几百电子伏的电子可以产生相同的辐射。现在,借助费米12年的数据,我们认为我们已经证明G106.3+2.7确实是一个PeVatron。” 方柯领导的一篇论文详细阐述了这一发现,发表在8月10日的《物理评论快报》上。 脉冲星J2229+6114在自转时会在灯塔状的信标中发出自己的伽马射线,而这种辉光以几GeV的能量在该区域占据主导地位,这种辐射大部分发生在脉冲星自转的前半段。该团队通过只分析来自周期后期的伽马射线,有效地屏蔽了来自脉冲星的辐射。低于10GeV时,残余物尾部没有明显的辐射。 在这个能量之上,脉冲星的干扰可以忽略不计,额外的来源变得很明显。该团队的详细分析压倒性地支持PeV质子是驱动伽马射线发射的粒子。 “到目前为止,G106.3+2.7是独一无二的,但它可能是新的超新星遗迹群中最亮的一员,这些超新星遗迹发射的伽马射线达到了TeV能量。”方指出。“费米天文台和超高能伽马射线天文台未来的观测可能会揭示更多的信息。” NASA探索宇宙奥秘——这个特殊的谜题需要十多年的前沿观测才能解决。 费米伽马射线太空望远镜是由戈达德管理的天体物理学和粒子物理学合作项目。费米是与美国能源部合作开发,法国、德国、意大利、日本、瑞典和美国的学术机构和合作伙伴做出了重要贡献。 参考来源: https://www.nasa.gov/feature/goddard/2022/nasa-s-fermi-confirms-star-wreck-as-source-of-extreme-cosmic-particles

詹姆斯·韦伯太空望远镜详细捕捉了垂死恒星的最终“表演”

詹姆斯·韦伯太空望远镜详细捕捉了垂死恒星的最终“表演”

有些恒星会把最好的留到最后。 数千年来,位于该场景中心的较暗恒星一直在向各个方向发射气体和尘埃环,NASA的詹姆斯·韦伯太空望远镜首次发现这颗恒星被尘埃所笼罩。 韦伯上的两个摄像机捕捉到了这一行星状星云的最新图像,其编号为NGC 3132,非正式名称为南环星云。它距离我们大约2,500光年。 韦伯将使天文学家能够深入研究像这样的行星状星云的更多细节——由垂死恒星排出的气体和尘埃云。了解存在哪些分子,以及它们在气体和尘埃壳中的位置,这将有助于研究人员完善对这些物体的认识。 这张照片显示的南环星云几乎是正面朝上的,但如果我们可以旋转它,从侧面看它,它的三维形状会更清晰地看起来像底部两个放在一起的碗,彼此分开,中心有一个大洞。 两颗恒星被锁定在一个紧密的轨道上,形成了当地的景观。韦伯的红外图像在这个复杂的系统中具有新的细节。在左边韦伯的近红外相机(NIRCam)拍摄的图像中,这些恒星及其光层非常显眼,而右边韦伯的中红外仪器(MIRI)拍摄的图像首次显示第二颗恒星被尘埃包围。这颗较亮的恒星正处于恒星演化的早期阶段,未来可能会喷射出自己的行星状星云。 同时,较亮的恒星会影响星云的外观。当这对行星继续围绕彼此旋转时,它们会“搅动”气体和尘埃的“锅”,形成了不对称的图案。 每个壳层都代表了一个较暗的恒星失去了一些质量的的一段时间。朝向图像外部区域的最宽的气体壳较早地被喷射出来。最接近恒星的那些是最近喷射出来的。追踪这些喷射物可以让研究人员了解系统的历史。 用NIRCam进行的观测还揭示了行星状星云周围极细的光线。来自中央恒星的星光从气体和尘埃中有洞的地方射出,就像阳光穿过云层的缝隙一样。 由于行星状星云存在了数万年,观察星云就像看一部极其慢动作的电影。恒星喷出的每一个壳层都使研究人员能够精确测量其中存在的气体和尘埃。 当恒星喷射出物质外壳时,其中会形成灰尘和分子——即使恒星继续喷射物质,也会改变景观。这些尘埃最终会使它周围的区域变得丰富,扩展到所谓的星际介质中。而且由于它的寿命很长,尘埃最终可能会穿越太空数十亿年,并被合并成一颗新的恒星或行星。 数千年后,这些微妙的气体和尘埃层将消散到周围的太空中。 影像来源:NASA, ESA, CSA, and STScI 詹姆斯·韦伯太空望远镜是世界上首屈一指的太空科学天文台。韦伯将解开我们太阳系中的谜团,展望其他恒星周围的遥远世界,探索我们宇宙的神秘结构和起源以及我们在其中的位置。韦伯是由NASA及其合作伙伴 ESA和CSA领导的一项国际计划。 NASA总部为该局的科学任务理事会监督该任务。位于马里兰州绿带的NASA戈达德航天飞行中心为该机构管理韦伯,并监督空间望远镜科学研究所、诺斯罗普·格鲁曼公司和其他任务合作伙伴执行的任务工作。除戈达德外,NASA的几个中心也为该项目做出了贡献,包括位于休斯顿的约翰逊航天中心、南加州的喷气推进实验室、阿拉巴马州亨茨维尔的马歇尔太空飞行中心、加州硅谷的艾姆斯研究中心等。 NIRCam由亚利桑那大学和洛克希德·马丁公司先进技术中心的一个团队建造。 MIRI由ESA和NASA提供,仪器由国家资助的欧洲研究所联盟(MIRI 欧洲联盟)与 JPL 和亚利桑那大学合作设计和制造。 从太空望远镜科学研究所下载此图像的全分辨率、未压缩版本和支持视觉效果:https://webbtelescope.org/contents/news-releases/2022/news-2022-033 参考来源: https://www.nasa.gov/image-feature/goddard/2022/nasa-s-webb-captures-dying-star-s-final-performance-in-fine-detail

詹姆斯·韦伯太空望远镜揭示了宇宙峭壁,恒星诞生的闪耀景观

詹姆斯·韦伯太空望远镜揭示了宇宙峭壁,恒星诞生的闪耀景观

这片由“山脉”和“山谷”组成的景观上点缀着闪闪发光的恒星,实际上是船底座星云中一个名为NGC3324的年轻恒星形成区域的边缘。这张由NASA新的詹姆斯·韦伯太空望远镜用红外线下拍摄的图像首次揭示了以前不可见的恒星诞生区域。 被称为宇宙悬崖的韦伯看似3D的画面看起来就像月光下的夜晚崎岖的山脉。实际上,它是NGC3324内气态空腔的边缘,这张图像中最高的“山峰”大约有7光年高。这个海绵状区域是由星云中强烈的紫外线辐射和恒星风从位于气态空腔中心的极大质量、炽热的年轻恒星雕刻而成的,位于该图像所示区域的上方。 来自年轻恒星的炽热的紫外线辐射正在慢慢侵蚀星云的墙壁,塑造星云。巨大的柱子耸立在发光的气体墙上方,抵抗着这种辐射。看似从天体“山脉”升起的“蒸汽”,实际上是炽热的电离气体和热尘埃,由于无休止的辐射而从星云中流出。 韦伯揭示了在可见光照片中完全隐藏的新兴恒星托儿所和单个恒星。由于韦伯对红外光的敏感性,它可以透过宇宙尘埃看到这些物体。在这张照片中清晰可见的原恒星喷流,从这些年轻恒星中射出。最年轻的辐射源出现在云的黑暗、多尘区域,呈红点状。处于恒星形成最早、快速阶段的物体很难捕捉,但韦伯的极端灵敏度、空间分辨率和成像能力可以记录这些难以捕捉的事件。 NGC3324的这些观测将阐明恒星形成的过程。恒星的诞生会随着时间的推移而传播,这是由侵蚀气态空腔的扩张引发。当明亮的电离边缘进入星云时,它会慢慢地推入气体和尘埃。如果边缘遇到任何不稳定的物质,增加的压力将触发物质坍塌并形成新的恒星。 相反,随着造星物质被侵蚀,这种类型的干扰也可能阻止恒星的形成。这是激发恒星形成和停止恒星形成之间非常微妙的平衡。韦伯将解决现代天体物理学的一些重大的开放性问题:是什么决定了在某个区域形成的恒星数量?为什么恒星会以一定的质量形成? 韦伯还将揭示恒星形成对巨大气体和尘埃云演化的影响。虽然大质量恒星(伴随着狂风和高能量)的影响通常很明显,但人们对更多的低质量恒星的影响知之甚少。当它们形成时,这些较小的恒星会产生狭长的、对立的喷流,这可以向云层注入大量的动量和能量。这减少了孕育新恒星的星云物质的比例。 到目前为止,科学家对大量年轻的、能量更大的低质量恒星的影响知之甚少。通过韦伯望远镜,他们将能够获得关于它们的数量和对整个星云的影响的全面普查。 NGC3324位于大约7,600光年之外,由韦伯的近红外相机(NIRCam)和中红外仪器(MIRI)拍摄。 NIRCam以其清晰的分辨率和无与伦比的灵敏度揭示了数百颗以前隐藏的恒星,甚至是众多的背景星系。 在MIRI看来,年轻的恒星和它们尘土飞扬的形成行星的原行星盘在中红外线中闪耀着明亮的光芒,呈现出粉红色和红色。MIRI揭示了嵌入尘埃中的结构,并揭示了大量喷流和外流的恒星来源。在MIRI的作用下,山脊表面的热尘埃、碳氢化合物和其他化合物会发光,呈现出锯齿状岩石的外观。 NGC3324于1826年由詹姆斯·邓洛普(JamesDunlop)首次编目。从南半球可见,它位于船底座星云(NGC 3372)的西北角。船底座星云是钥孔星云和活跃、不稳定的超巨星海山二(Eta Carinae)的所在地。 影像来源:NASA, ESA, CSA, and STScI 詹姆斯·韦伯太空望远镜是世界上首屈一指的太空科学天文台。韦伯将解开我们太阳系中的谜团,展望其他恒星周围的遥远世界,探索我们宇宙的神秘结构和起源以及我们在其中的位置。韦伯是由NASA及其合作伙伴 ESA和CSA领导的一项国际计划。 NASA总部为该局的科学任务理事会监督该任务。位于马里兰州绿带的NASA戈达德航天飞行中心为该机构管理韦伯,并监督空间望远镜科学研究所、诺斯罗普·格鲁曼公司和其他任务合作伙伴执行的任务工作。除戈达德外,NASA的几个中心也为该项目做出了贡献,包括位于休斯顿的约翰逊航天中心、南加州的喷气推进实验室、阿拉巴马州亨茨维尔的马歇尔太空飞行中心、加州硅谷的艾姆斯研究中心等。 NIRCam由亚利桑那大学和洛克希德·马丁公司先进技术中心的一个团队建造。 MIRI由ESA和NASA提供,仪器由国家资助的欧洲研究所联盟(MIRI 欧洲联盟)与 JPL 和亚利桑那大学合作设计和制造。 从太空望远镜科学研究所下载此图像的全分辨率、未压缩版本和支持视觉效果:https://webbtelescope.org/contents/news-releases/2022/news-2022-031 参考来源: https://www.nasa.gov/image-feature/goddard/2022/nasa-s-webb-reveals-cosmic-cliffs-glittering-landscape-of-star-birth

大麦哲伦星云中的绿松石羽流

大麦哲伦星云中的绿松石羽流

In this image from 2014, brightly glowing plumes of the Large Magellanic Cloud (LMC) appear almost like an ocean current with turquoise-tinted currents and nebulous strands reaching out into the surroundings. This image shows part of the Tarantula Nebula’s outskirts located within the LMC, a small nearby galaxy that orbits the Milky Way and appears as a blurred blob in our skies. The Hubble Space Telescope has peeked many times into this galaxy, releasing stunning images of the whirling clouds of gas and sparkling stars. In most images of the LMC the color is completely different to that seen here. For this image, researchers substituted the customary R filter, which selects the red light, and replaced it by a filter letting through the near-infrared light….

太空蝴蝶

太空蝴蝶

What looks like a red butterfly in space is in reality a nursery for hundreds of baby stars, revealed in this infrared image from NASA’s Spitzer Space Telescope. Officially named W40, the butterfly is a nebula – a giant cloud of gas and dust in space where new stars may form. The butterfly’s “wings” are giant bubbles of hot, interstellar gas blowing from the hottest, most massive stars in this region. The material that forms W40’s wings was ejected from a dense cluster of stars that lies between the wings in the image. The hottest, most massive of these stars, W40 IRS 1a, lies near the center of the star cluster. W40 is about 1,400 light-years from the Sun, about the same distance as the…

星云的景象

星云的景象

This colorful image, taken by the Hubble Space Telescope and published in 2018, celebrated the Earth-orbiting observatory’s 28th anniversary of viewing the heavens, giving us a window seat to the universe’s extraordinary tapestry of stellar birth and destruction. At the center of the photo, a monster young star 200,000 times brighter than our Sun is blasting powerful ultraviolet radiation and hurricane-like stellar winds, carving out a fantasy landscape of ridges, cavities, and mountains of gas and dust. This mayhem is all happening at the heart of the Lagoon Nebula, a vast stellar nursery located 4,000 light-years away and visible in binoculars simply as a smudge of light with a bright core. The giant star, called Herschel 36, is bursting out of its natal cocoon of…