木卫二内部温度可能足以为海底火山提供燃料

木卫二内部温度可能足以为海底火山提供燃料

该插图于2020年12月更新,描绘了NASA的欧罗巴快船探测器。该任务预计在2024年发射,将调查木卫二及其内部海洋是否具备适宜生命存在的条件。 影像来源:NASA/JPL-Caltech 木星的卫星木卫二有一个覆盖着巨大的全球海洋的冰壳。下面的岩石层可能热到让岩质地幔足以融化,导致海底火山。 新的研究和计算机模型显示,木星的卫星木卫二的海底可能在最近发生过火山活动——而且可能仍然在发生。美国国家航空航天局(NASA)即将在2024年发射欧罗巴快船(Europa Clipper)探测器,它将飞近这颗冰冷的卫星,收集测量数据,为最近的发现提供线索。 科学家们有强有力的证据表明,木卫二的冰层和岩石内部之间存在着一个巨大的海洋。这项新研究表明,木卫二可能有足够的内部热量部分融化这一岩石层,这个过程可能为海底的火山提供能量。最近对这种内部热量是如何产生和传递的3D模型是迄今为止对这种内部热量对木卫二的影响最详细、最彻底的研究。 木卫二的岩质地幔之所以热到足以融化,关键在于木星对其卫星的巨大引力。当木卫二围绕着这颗气态巨行星旋转时,这颗冰冷的卫星的内部会发生弯曲。弯曲迫使能量进入木卫二内部,然后以热量的形式渗出(想想回形针是如何反复弯曲产生热量的)。木卫二内部弯曲得越多,产生的热量就越多。 最近发表在《地球物理研究快报》上的这项研究,详细模拟了木卫二的岩石部分在木星引力的牵引下如何弯曲和加热。它显示了热量在哪里消散,以及它如何融化岩石地幔,从而增加了海底火山爆发的可能性。 几十年来,木卫二上的火山活动一直是人们猜测的话题。相比之下,木星的卫星木卫一明显是有火山。那里的数百座火山喷发出熔岩喷泉,并喷射出高达250英里(400公里)的火山气体和尘埃,这些活动是由于木星的引力造成的相同类型的内部加热所致。但是木卫二比木卫一离它的主行星更远,所以科学家们想知道在冰封的表面下是否会有类似的效应。 科学家的发现表明,木星的卫星木卫二的内部可能由一个铁核组成,被岩石地幔包围,与冰壳下的海洋直接接触。新的研究模型揭示了内部热量如何为海底火山提供燃料。 影像来源:NASA/JPL-Caltech/Michael Carroll 在捷克共和国查尔斯大学的玛丽·贝侯科娃(Marie Běhounková)领导下,作者进一步预测,火山活动最有可能发生在木卫二的两极附近——这一纬度产生最多的热量。他们还研究了火山活动是如何随着时间的推移而演变。寿命长的能源为潜在生命的发展提供了更多的机会。 海底火山如果存在的话,可能会为热液系统提供动力,就像那些为地球海洋底部的生命提供燃料的系统一样。在地球上,当海水与热岩浆接触时,相互作用产生了化学能。正是来自这些热液系统的化学能,而不是来自阳光,帮助我们的海洋深处的生命生存。木卫二海底的火山活动可能是支持该卫星海洋潜在宜居环境的一种方式。 “我们的发现提供了更多的证据,表明木卫二的地下海洋可能是一个适合生命出现的环境。”贝侯科娃说。“木卫二是少有的可能维持了数十亿年的火山活动的行星体之一,也可能是地球之外唯一一个拥有大型水库和长期能量来源的行星。” 直接观测 当欧罗巴快船探测器在2030年达到预定目标时,NASA的科学家们将有机会对新的预测进行测试。该探测器将围绕木星运行,并对木卫二进行数十次近距离飞行,以绘制木卫二地图并调查其组成。在它收集的科学数据中,飞船将对木卫二表面进行详细调查,并对木卫二稀薄的大气层进行采样。 表面和大气观测将使科学家有机会了解更多关于木卫二内部海洋的情况,如果水通过冰壳向上渗透的话。科学家们认为,海洋和地壳之间的物质交换会在表面留下海水的痕迹。他们还认为,这种交换可能会释放出气体,甚至可能是水蒸汽柱,喷射出的粒子可能包含来自海底的物质。 随着欧罗巴快船测量木卫二的重力场和磁场,这些区域的异常,特别是两极的异常,可能有助于确认新研究所预测的火山活动。 “木卫二的海底可能会出现炎热的岩石内部和火山,这增加了木卫二海洋适宜居住的可能性,”美NASA位于南加州喷气推进实验室的欧罗巴快船项目科学家罗伯特·帕帕拉多(Robert Pappalardo)说。“我们也许可以用欧罗巴快船计划中的重力和成分测量来测试这一点,这是一个令人兴奋的前景。” 有关任务的更多信息 诸如欧罗巴快船这样的任务有助于促进天体生物学领域的发展,即对可能孕育我们所知的生命的遥远世界的变量和条件的跨学科研究。虽然欧罗巴快船不是探测生命的任务,但它将对木卫二进行详细侦察,并调查这颗冰冷的卫星及其表面下的海洋是否有能力支持生命。了解木卫二的可居住性将有助于科学家更好地了解地球上的生命如何发展,以及在我们的星球之外发现生命的可能性。 由位于加州帕萨迪纳的加州理工学院管理,喷气推进实验室与位于马里兰州的约翰·霍普金斯应用物理实验室(APL)合作,为位于华盛顿的NASA科学任务理事会领导欧罗巴快船任务的发展。位于阿拉巴马州亨茨维尔的美国宇航局马歇尔太空飞行中心的行星任务项目办公室负责欧罗巴快船任务的项目管理。 有关木卫二和欧罗巴快船的更多信息,请参见: https://europa.nasa.gov

NASA科学家发现火星上可能存在有机盐

NASA科学家发现火星上可能存在有机盐

这副图由美国国家航空航天局(NASA)好奇号(Curiosity)探测器上的桅杆照相机(Mastcam)拍摄于2014年2月9日,也即好奇号任务的第538个火星日。好奇号探测器驶过该沙丘,沙丘位于Dingo Gap 山口。 来源:NASA/加州理工-喷气推进实验室(JPL-Caltech)/马林空间科学系统(MSSS) NASA的一个团队发现火星上可能存在有机盐。这些盐类是有机化合物的化学残留物,就像古代陶器的碎片一样,NASA好奇号探测器之前所探测到的盐类也是如此。火星上的有机化合物和盐类可能是由地质过程形成的,也可能是古代微生物生命的残留物。 在火星上直接探测到有机盐的存在,不仅为火星上曾经存在有机物质的观点增添了更多证据,也对火星目前的可居住性提供支持。因为在地球上,一些生物体可以利用草酸盐和醋酸盐等有机盐类来获取能量。 该研究由来自NASA戈达德太空飞行中心的有机地球化学家詹姆斯·M·T·路易斯(James M. T. Lewis)牵头,研究成果于3月30日发表在《地球物理研究期刊》(Journal of Geophysical Research)上。他表示:“如果我们在火星上的任何地方确定存在有机盐集中分布,我们会想对这些区域进行进一步调查,最好是在地表以下更深处进行钻探,那里的有机物质可以被保存得更好。” 路易斯的实验和对火星样本分析仪数据的分析,都间接表明了火星上有机盐的存在。火星样本分析仪又名“化学和矿物学分析仪”,简称SAM,是好奇号探测器内部的一个便携式化学实验室。但是,使用诸如火星样本分析仪之类的仪器在火星上直接识别有机盐是很困难的,该仪器通过加热火星土壤和岩石以释放出揭示这些样品成分的气体。然而挑战在于,加热有机盐只产生简单的气体,而火星土壤中的其他成分也可能会释放这些气体。 如果你有来自另一个星球的一个样本,而你想知道它是否含有某种特定的分子,甚至可能是一个能够揭示该星球是否能维持生命的分子,你将会怎么做?当科学家们面临这种情况时,他们使用了一个惊人的工具:质谱仪。质谱仪可以使科学家得以非常仔细地对样品进行观测,并确定其中含有的物质。 如果你有一个来自另一个星球的样本,而你想找出它是否含有某种分子……甚至可能是一个能揭示该星球是否能维持生命的分子,你会怎么做?当科学家们面对这样的情况时,他们使用了一个惊人的工具:质谱仪。它可以分离材料,使科学家能够非常仔细地观察一个样本,并看到里面有什么。 影像来源:美国宇航局/戈达德太空飞行中心 然而,路易斯和他的团队提出,好奇号探测器上使用不同技术的另外一个仪器,即化学与矿物学分析仪(CheMin)可以探测到某些有机盐类(如果含量足够丰富)。但到目前为止,化学与矿物学分析仪还没有检测到有机盐类。 寻找有机分子或有机盐的残余物,对NASA寻找其他星球上的生命而言至关重要。但在火星表面,这是一项具有挑战性的任务,因为数十亿年的辐射已经将有机物质抹去或分解。就像考古学家挖掘陶器碎片一样,好奇号探测器收集火星土壤和岩石,其中可能含有微小的有机化合物块,然后由火星样本分析仪和其他仪器鉴定其化学结构。 路易斯和他的团队以及其他科学家们试图通过好奇号探测器传回地球的数据,将这些破碎的有机物碎片拼凑起来。他们的目标是推断出这些碎片曾经可能属于什么类型的大分子,以及这些分子可能揭示出怎样的火星古代环境和潜在的生物学。 路易斯表示:“我们正试图解开数十亿年的有机化学过程,在这一有机记录中,可能包含终极大赏:即表明火星上曾经存在生命的证据。” 虽然一些专家几十年来一直预测火星上保存着古老的有机化合物,但由于好奇号上的火星样本分析仪实验,这一预测才被予以证实。例如,由NASA戈达德太空飞行中心的天体生物学家珍妮弗·艾根布罗德(Jennifer L. Eigenbrode)牵头的好奇号任务科学家国际团队于2018年发布的一份报告中表明检测到了无数含碳分子。正如我们所知,碳是生命的基本元素。 研究科学家詹妮弗·埃杰布洛德博士讨论了火星上发现的古代有机分子。 影像来源:美国宇航局/戈达德太空飞行中心/丹·加拉格尔 艾根布罗德与路易斯合作进行了这项新的研究,她表示:“我们在火星表面发现的30亿年历史的岩石中保存着有机物,这是一个非常有希望的迹象,这表明我们也许能够从火星地表之下保存得更好的样本中获取更多信息。” 几十年前,科学家们预测火星上的有机化合物可能分解成盐。他们认为,这些盐类比大而复杂的分子(例如与生物功能相关的分子)更有可能长期存留在火星表面。 如果火星样本中存在有机盐,路易斯和他的团队想知道在火星样本分析仪的加热炉中加热会如何影响其释放气体的类型。火星样本分析仪的工作原理是将样品加热至超过1800华氏度(1000摄氏度)。热量使分子分解,释放出一些气体。不同的分子在特定的温度下释放出不同的气体。因此,通过观测在哪个温度下释放出哪种气体,科学家们可以推断出样品是由什么成分构成的。 路易斯表示:“当加热火星样本时,矿物质和有机物之间会产生许多相互作用,这可能会使我们的实验更难得出结论,所以我们正在做的工作是试图将这些相互作用进行拆解,以便在科学家们在火星上进行分析时能够利用这些信息。” 路易斯对一系列与惰性硅石粉混合的有机盐进行了分析,以复制火星岩石。他还研究了在硅石混合物中加入高氯酸盐的影响。高氯酸盐是一种含有氯和氧的盐类,在火星上很常见。科学家们长期以来一直担心它们会对寻找有机物质迹象的实验造成干扰。 史上第一张火星照片来自NASA的维京1号(Viking 1)火星探测器,摄于1976年7月20日。 来源:NASA/喷气推进实验室(JPL) 欲了解更多信息,请戳阅:https://www.jpl.nasa.gov/images/first-photograph-taken-on-mars-surface 事实上,研究人员发现高氯酸盐的确对他们的实验产生了干扰,并且准确地指出了是如何干扰的。但他们也发现,与没有高氯酸盐的情况相比,他们从含有高氯酸盐的样本中收集到的结果与火星样本分析仪的数据更加吻合,这支持了火星上存在有机盐的可能性。 此外,路易斯和他的团队的报告表明,有机盐可以被好奇号探测器上的化学与矿物学分析仪检测到。为确定样品的成分,化学与矿物学分析仪向其发射X射线,并测量X射线向检测器衍射的角度。 随着好奇号探测器进入盖尔陨石坑夏普山的新区域,其火星样本分析仪和化学与矿物学分析仪团队将继续搜寻有机盐类的信号。 不久之后,科学家们也将有机会研究火星地表以下保存得更好的土壤。欧洲航天局(ESA)即将推出ExoMars火星漫游车,其装备可以钻探至火星地表之下6.5英尺(约2米)。它将携戈达德仪器,分析火星地表下更深层的化学成分。NASA的毅力号”(Perseverance)火星探测器上没有可以探测有机盐的仪器,但它正在收集样本,以便将来送回地球通过精密的实验室机器来寻找有机化合物。 参考来源: https://www.nasa.gov/feature/goddard/2021/salts-could-be-important-piece-of-martian-organic-puzzle-nasa-scientists-find-0

一个新的太空仪器捕捉到了它的第一次太阳喷发

一个新的太空仪器捕捉到了它的第一次太阳喷发

对于新的太阳观测航天器来说,第一次太阳喷发总是特别的。 2021年2月12日,距离发射还有一年多的时间,欧洲航天局(ESA)和美国宇航局(NASA)的太阳轨道飞行器捕捉到了这一日冕物质抛射,或称CME。这张照片来自该任务的SoloHI仪器——太阳轨道日球成像仪的简称——该仪器可以观察太阳和行星之间的太阳风、尘埃和宇宙射线。 这是一个简短的、颗粒状的视图。太阳轨道飞行器的遥感要到11月才进入全面科学模式。SoloHI使用四个探测器中的一个,其频率低于正常频率的15%,以减少获取的数据量。尽管如此,敏锐的眼睛仍然可以发现突然爆发的粒子,即CME,正在逃离太阳,它在镜头的右上方。日冕物质抛射在视频的半途中以明亮的爆发开始——日冕物质抛射密集的前缘——并向屏幕左侧漂移。 太阳轨道日球成像仪(SoloHI)观测到的第一次日冕物质抛射,或称CME,表现为一股突然的白色阵风(日冕物质抛射的密集锋面),并扩展成太阳风。本视频使用差分图像,通过从当前图像中减去前一张图像的像素来突出变化。图片中最右边的缺失点是一个过度曝光的区域,来自航天器太阳能阵列的光被反射到SoloHI的视野中。出现在我们视野中的黑白方块是遥测块,是压缩图像并将其传回地球时产生的伪影。 影像来源:ESA & NASA/Solar Orbiter/SoloHI team/NRL 对于SoloHI来说,捕捉到这个CME是一个愉快的意外。当喷发到达航天器时,从地球的角度看,太阳轨道飞行器刚刚从太阳后面经过,正绕着另一边返回。在计划这项任务时,团队并不期望在那段时间内能够记录任何数据。 “但是自从我们计划了这个之后,地面站和技术都得到了升级,”华盛顿特区美国海军研究实验室SoloHI的首席研究员罗宾·科拉尼诺(Robin Colaninno)说,“所以我们实际上得到了比原来计划的更多的下行链路时间。于是SoloHI眨了眨眼睛,捕捉到了它的第一次日冕物质抛射。” 太阳轨道飞行器上的另外两个成像仪——欧洲航天局的极端紫外线成像仪和Metis——也捕捉到了日冕物质抛射的图像。请阅读更多有关欧空局对此次活动的报道。 NASA的STEREO-A航天器,即日地关系观测站的简称,也从它的COR2探测器上瞥见了这一景象,COR2探测器挡住了太阳明亮的圆盘,以观察太阳风中其他微弱的现象。 由太阳轨道飞行器的太阳轨道日球成像仪观测到的第一次日冕物质抛射。 影像来源:NASA/STEREO/COR2 回到地球上,NASA的月球到火星空间天气分析办公室模拟了日冕物质抛射在太阳系中的轨迹,以追踪它在太阳系中的轨迹。标有红色菱形的太阳轨道器和红色方形的STEREO-A的位置显示了它们不同的有利位置。 SoloHI在2021年2月12日观测到的日冕物质抛射的模拟路径。最左边的图显示太阳在中心呈白色圆圈,内行星和一些航天器在轨道上的位置出现。中间和右边的面板显示了同一模型的不同角度,聚焦在地球上。 影像来源:NASA’s Goddard Space Flight Center/M2M/CCMC NASA的航天器已经观测日冕物质抛射数十年了,但太阳轨道飞行器仍然是一个改变游戏规则的工具。“在过去的25年里,我们已经意识到在太阳和地球表面之间发生了很多日冕物质抛射,”科拉尼诺说。“所以我们希望通过更靠近太阳来获得这些外流物的更高分辨率的图像。” 太阳轨道飞行器已经拍摄了迄今为止最接近太阳的照片,而且它只会越来越近。太阳轨道飞行器的正式任务在11月开始,届时SoloHI和其他的遥感仪器将以全科学模式启动。敬请期待! 参考来源: https://www.nasa.gov/feature/goddard/2021/a-new-space-instrument-captures-its-first-solar-eruption

NASA火箭追寻太阳热大气层的来源

NASA火箭追寻太阳热大气层的来源

在瞥见了太阳外层大气中微弱但广泛存在的高温物质后,NASA的探测火箭正在返回寻找更多的物质。这一次,他们携带了一个经过优化的新仪器,可以在更大范围内观察太阳。 这项任务被称为极端紫外线正常入射光谱仪,或简称EUNIS,将从新墨西哥州的白沙导弹发射场发射。发射窗口将于2021年5月18日开启。 EUNIS是一个安装在探空火箭上的仪器套件,探空火箭是一种太空飞行器,在地球大气层上方进行短暂的飞行,然后返回地球。进入太空是很重要的,因为EUNIS在不穿透地球大气层的极紫外光范围内观测太阳。 接下来的飞行是EUNIS仪器的第四次飞行,该团队增加了一个新的通道来测量9至11纳米之间的波长。(可见光波长在380到700纳米之间。)在2013年EUNIS上一次飞行中出现了一个意外的发现之后,新的波长范围引起了人们的注意。 “请原谅我用双关语,但这是一个非常‘热门’的波长区域。”阿德里安·道(Adrian Daw)说,他是NASA戈达德太空飞行中心的空间物理学家,也是EUNIS的首席研究员。 在2013年的飞行中,该团队正在扫描一个活跃的区域——太阳上一个磁性复杂的区域,通常是太阳耀斑和太阳黑子的位置——他们观察到一条铁的光谱线,它失去了26个电子中的18个。要失去这么多电子,它必须被加热到难以置信的高温,比研究小组预期的要高得多。 在2013年的飞行中,NASA的EUNIS探空火箭检查了白线所示区域内来自太阳的光线(强加在美国宇航局太阳动力学观测站的太阳图像上),然后将光线分成不同波长(如左右两侧的线条图像——光谱图所示),以确定在太阳上观察到的物质温度。这些光谱提供了证据来解释为什么太阳的大气层比其表面热得多。 影像来源:NASA / EUNIS / SDO “它是在大约1400万到1600万华氏度的温度下形成的,”杰夫·布罗修斯(Jeff Brosius)说,他是华盛顿特区天主教大学的空间科学家,也是EUNIS团队的成员。“这些离子通常与耀斑有关,但与我们观察到的静态活跃区域无关。” 这些观察结果为长期以来关于太阳外层大气如何变得如此炎热的争论提供了素材。虽然太阳表面的温度在华氏10,000度左右,但其最外层,即日冕,虽然离核心更远,却不知为何要比太阳表面热300倍。 一种关于日冕加热的理论也预测了他们所看到的超热铁。“纳米耀斑”理论声称,日冕是由一系列微小的磁性爆炸加热的,这些磁力爆炸协同工作来加热日冕。这些纳米耀斑通常太小,无法探测到,但应该会留下像他们所看到的那样的极热爆发。 布罗修斯说:“就我个人而言,这种活跃区域中高度电离的铁的广泛辐射将纳米耀斑的解释‘推升’到列表的首位。” 对于即将到来的飞行,EUNIS仪器套件已经被修改,以从同样的电离铁中捕获更明亮的谱线。它还能从失去17个电子的铁中捕捉到类似的能量。 布罗修斯说:“通过观察更强的光谱线,我们希望在比以前更大的区域探测到这些离子发出的微弱辐射。” 这个新的通道是太阳科学的一个首创,因为它被内置到一个叫做成像光谱仪的仪器中。通常情况下,科学家们只能通过一次关注太阳的一个特定点来获得精确的温度曲线,称为光谱。但是为了看到超热铁的扩散,研究团队还需要看到这些温度来自哪里。 “这是我们第一次将这些波长的光谱和空间信息结合起来,”Daw说。“从来没有人以这种方式观察过太阳。” 了解温度,同时还能看到图像,有助于将EUNIS的数据与其他与它共同观测的任务的数据进行比对,包括NASA的界面区域成像光谱仪,NASA的太阳动力学观测站,以及日本航空航天探索机构和NASA的日出卫星任务。 与许多探测火箭任务一样,EUNIS的数据将用于指导和改进其他太空科学任务。NASA的太阳动力学观测站,或称SDO,卫星以几个不同的波长带对太阳进行成像。因为不同的波长对应不同的温度,所以波长测量越精确越好。EUNIS的测量将非常精确地分辨一些特定波长,帮助SDO更好地校准其图像,使科学家更好地了解他们在SDO图像中看到的确切内容。 2013年10月,一个X级耀斑(最强的太阳耀斑分类)活动区域爆发,这是由NASA太阳动力学观测站的望远镜观测到的,该望远镜观测到的光波长为9.4纳米(绿色)。EUNIS的测量将有助于校准这个波长通道,以更精确地确定被观测物质的温度。 影像来源:NASA / SDO EUNIS将由黑布兰特九号探空火箭发射到大约200英里的高度,然后利用降落伞返回地球进行回收。EUNIS团队预计将有大约6分钟的观测时间。 参考来源: https://www.nasa.gov/feature/goddard/2021/nasa-rocket-chasing-the-source-of-the-sun-s-hot-atmosphere

OSIRIS-REx告别小行星贝努

OSIRIS-REx告别小行星贝努

On April 9, 2021, NASA’s Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) spacecraft took one last look at Bennu, the asteroid from which it scooped up a sample last October. Slated for return to Earth in 2023, the mission is on track to deliver a sample of pristine material left over from the formation of our solar system into the hands of researchers on Earth. This image, the last one taken by the spacecraft, shows crescent Bennu with its night side merging with the complete black of space as the spacecraft pushed away from Bennu. For two years, OSIRIS-REx studied the asteroid, revealing the many secrets of this ancient body and delivering clues about its rubble-pile-like consistency and surface terrain, which turned out…

当旅行者1号探测星际空间时,星际空间的密度正在产生波动

当旅行者1号探测星际空间时,星际空间的密度正在产生波动

直到最近,历史上的每一艘航天器都是在我们的日球层内进行测量的,日球层是太阳膨胀起来的磁泡。但在2012年8月25日,NASA的旅行者1号改变了这一情况。当它穿过日球层的边界时,它成为了第一个进入并测量星际空间的人造物体。旅行者1号已经进行了8年的星际旅行,它的数据让人们对这一领域的情况有了新的认识。 如果说我们的日球层是一艘航行在星际水域的船,那么旅行者1号就是一艘刚刚从甲板上落下的救生筏,决心要对洋流进行勘测。目前,它感受到的任何汹涌的海水都主要来自于太阳层的尾流。但在更远的地方,它能感受到来自宇宙深处的扰动。最终,我们的日球层将从它的测量中完全消失。 “可以说,对于旅行者1号需要走多远才能开始看到更纯净的星际空间,我们有一些想法,”纽约伊萨卡市康奈尔大学的博士生、旅行者号团队的最新成员斯特拉·奥克(Stella Ocker)说。“但我们不完全确定何时能达到这一点。” [rml_read_more] 奥克的新研究周一发表在《自然-天文学(Nature Astronomy)》杂志上,报告了可能是对星际空间物质密度的首次连续测量。奥克说:“这次探测为我们提供了一种测量星际空间密度的新方法,并为我们探索非常近的星际介质的结构开辟了一条新途径。” 当人们描绘恒星之间的物质时——天文学家称之为“星际介质”,一种由粒子和辐射组成的散开的汤——人们可能会想象一个平静、安静、宁静的环境。这将是一个错误。 “我曾用过‘静止的星际介质’这个词——但你可以找到很多不是特别静止的地方,”康奈尔大学的空间物理学家、论文的合著者吉姆·科德斯( Jim Cordes)说。 如同海洋一样,星际介质充满了汹涌的波浪。最大的一个波浪来自于我们的星系的旋转,因为空间相互碰撞,产生了跨越几十光年的波动。较小的波(尽管仍然巨大)从超新星爆炸中涌出,从一个波峰延伸到另一个波峰,绵延数十亿英里。最小的波纹通常来自我们自己的太阳,因为太阳爆发发出的冲击波穿过空间,渗透到我们的日球层。 这些冲击波揭示了关于星际介质密度的线索——这个值影响着我们对日球层形状、恒星如何形成,甚至我们在银河系中的位置的理解。当这些波在空间中回响时,它们会振动周围的电子,这些电子以特定的频率发出,这取决于它们挤在一起的程度。铃声的音调越高,电子密度就越高。旅行者1号的等离子波子系统——包括两个伸出在飞船后面30英尺(10米)长的“兔子耳朵”天线——就是为了听到这种铃声而设计的。 这些碰撞波揭示了关于星际介质密度的线索——这个值影响着我们对日球层形状、恒星如何形成,甚至我们在银河系中的位置的理解。当这些波在空间中回响时,它们会振动它们周围的电子,这些电子以特定的频率发出声音,具体取决于它们的拥挤程度。 声音的音调越高,电子密度就越高。旅行者1号的等离子波子系统——包括两个伸出在飞船后面30英尺(10米)长的“兔子耳朵”天线——就是为了听到这种声音而设计的。 NASA旅行者1号航天器的示意图,显示了等离子波子系统和其他仪器使用的天线。 影像来源:NASA / JPL-Caltech 2012年11月,在离开日球层三个月后,旅行者1号第一次听到了星际声音。六个月后,又出现了另一种呼啸声——这次声音更大,音调更高。星际介质似乎变得越来越厚,而且速度越来越快。 影像来源:NASA / JPL-Caltech 在今天旅行者号的数据中,这些瞬间的呼啸声以不规则的间隔持续着。它们是研究星际介质密度的极好方法,但确实需要一些耐心。 奥克说:“它们一年只被发现一次,所以依靠这些偶然事件意味着我们的星际空间密度地图有点稀疏。” 奥克开始寻找一种星际中等密度的连续测量方法,以填补这些空白——一种不依赖于太阳偶尔传播出来的冲击波的方法。在对旅行者1号的数据进行筛选,寻找微弱但一致的信号后,她发现了一个很有希望的候选信号。2017年年中,就在又一次呼啸声响起的时候,这种情况开始增多。 “它实际上是一个单一的音调,”奥克说。“随着时间的推移,我们确实看到了它的变化,但频率的移动方式告诉我们密度是如何变化的。” 在观察仅比噪声大一点的信号时,奥克发现了一个微弱但几乎连续的信号——以一条细红线可见——连接着旅行者1号等离子体波子系统数据中更强的等离子体振荡事件。蓝色背景为只显示强信号的图表,白色背景为显示包括等离子体波发射在内的较弱信号的过滤数据。 影像来源:旅行者1号等离子波子系统/Stella Ocker 奥克将新的信号称为等离子体波发射,它似乎也能追踪星际空间的密度。当突如其来的呼啸声声出现在数据中时,发射信号的音调也随之上升或下降。该信号也类似于在地球上层大气中观察到的一个信号,已知该信号是根据地球上的电子密度进行跟踪的。 “这真的很令人兴奋,因为我们能够定期对很长一段空间的密度进行采样,这是迄今为止我们拥有的最长的空间范围。”奥克说。“这为我们提供了旅行者所看到的最完整的密度和星际介质地图。” 根据该信号,旅行者1号周围的电子密度从2013年开始上升,到2015年年中左右达到目前的水平,密度增加了大约40倍。在他们分析的到2020年初结束的整个数据集中,宇宙飞船似乎处于类似的密度范围,有一些波动。 目前,奥克和她的同事们正试图建立一个等离子体波是如何产生的物理模型,这将是解释等离子体波的关键。与此同时,旅行者1号的等离子波子系统不断将数据发回离地球越来越远的地方,那里的每一个新发现都有可能使我们重新想象我们在宇宙中的家。 参考来源: https://www.nasa.gov/feature/goddard/2021/as-nasa-s-voyager-1-surveys-interstellar-space-its-density-measurements-are-making-waves

OSIRIS-REx航天器携带小行星样本前往地球

OSIRIS-REx航天器携带小行星样本前往地球

经过近5年的太空探索,美国宇航局的“起源、光谱解释、资源识别、安全、风化层探测器”(OSIRIS-REx)宇宙飞船正带着来自近地小行星贝努的大量岩石和尘埃返回地球。 5月10日,星期一,美国东部时间下午4点23分,飞船的主引擎全速运转了7分钟,这是自2018年抵达贝努以来最重要的一次机动。这一燃烧力推动宇宙飞船以600英里每小时(近1000公里每小时)的速度远离小行星,使其开始为期2.5年的地球之旅。 在释放样本胶囊后,OSIRIS-REx将完成它的主要任务。它将启动其引擎,安全地飞过地球,使其在金星轨道内绕太阳运行。 在围绕太阳两圈后,OSIRIS-REx航天器将于2023年9月24日到达地球。返回时,装有贝努样本的太空舱将与航天器的其他部分分离,并进入地球的大气层。该太空舱将用降落伞降落到到犹他州西沙漠的犹他州测试和训练场,科学家们将在那里等待回收它。 “OSIRIS-REx的许多成就证明了探索实时展开的大胆和创新方式,”NASA总部科学副局长托马斯·泽布臣(Thomas Zurbuchen)说。“该团队迎接了挑战,现在我们将太阳系的一块原始碎片并将其送回地球,一代又一代的研究人员可以解开它的秘密。” [rml_read_more] 为了实现这项多年计划,十几名导航工程师进行了计算,并编写了计算机代码来指导飞船何时以及如何将自己推离推离贝努。从贝努出发后,将样本安全带回地球是该团队的下一个关键目标。这包括计划未来的机动,使航天器在整个旅程中保持正确的方向。 “我们之前的整个思维方式一直是‘相对于贝努,我们在太空中处于什么位置?’”美国国家航空航天局戈达德太空飞行中心副项目经理迈克·莫罗说。“现在我们的思维已经转向了‘航天器相对于地球处于什么位置?’” 影像来源:NASA 帮助航天器确定与贝努有关的方向的导航相机在拍摄了小行星的最后一张图片后,于4月9日被关闭。随着贝努出现在后视镜,工程师们正在利用NASA的全球航天器通信设施的深空网络,通过向OSIRIS-REx发送无线电信号来引导它。通过测量从航天器转发器返回的电波的频率,工程师们可以知道OSIRIS-REx的移动速度。工程师们测量无线电信号从航天器传回地球所需的时间,以确定其位置。 超出任务预期 5月10日的启程日期根据本努与地球的路线来确定的。此次返航的目标是在2023年9月将航天器送到距离地球约6000英里(约10000公里)的范围内。虽然OSIRIS-REx仍然有大量的燃料剩余,但该团队正在努力尽可能地保留更多的燃料,以便在将样品舱返回地球后,进行对另一颗小行星的潜在扩展任务。该团队将在今年夏天调查这一任务的可行性。 航天器的航向将主要由太阳引力决定,但工程师将需要偶尔通过点燃引擎进行小的航向调整。 位于加州西米谷的KinetX航空航天公司的OSIRIS-REx导航负责人彼得·安特里西亚(Peter Antreasian)说:“我们需要进行定期修正,使轨道越来越接近地球大气层,以便释放样品,并考虑到自上次燃烧以来可能积累的小误差。” 该团队将在返回地球前的几周内进行航向调整,以精确定位样品舱释放到地球大气层的位置和角度。角度太低可能会导致太空舱像跳出湖面的小石子一样弹出大气层;角度太高,太空舱可能会因为大气层的摩擦和热量而燃烧起来。如果OSIRIS-REx未能释放太空舱,该团队有一个备用计划,让它驶离地球,并在2025年再次尝试。 “团队内部对航天器离开贝努有很大的情绪,”莫罗说。“我认为每个人都有一种巨大的成就感,因为我们面对所有这些艰巨的任务,并且能够完成抛给我们的所有目标。但是也有一些怀念和失望,因为这部分任务即将结束。” OSIRIS-REx超过了许多预期。最近,在COVID-19全球大流行的情况下,该团队完美地执行了任务中最关键的操作,从贝努的表面采集了超过2盎司(60克)的土壤。 在收集样本之前,一些意外情况使团队保持警惕。例如,在航天器进入围绕贝努的第一个轨道一周后,即2018年12月31日,团队意识到这颗小行星正在向太空释放小块的岩石。 莫罗说:“我们必须尽快确认从贝努表面喷射出来的小石块不会对航天器造成危害。” 到达小行星后,团队成员还惊讶地发现贝努上布满了巨石。 “我们真的有这样的想法,我们到达的是一个拥有开放地带的小行星。”图森亚利桑那大学的奥西里斯-雷克斯副首席研究员希瑟·伊诺斯(Heather Enos)说。“现实非常令人震惊。” 为了克服贝努表面的极端和意外的崎岖,工程师们不得不迅速开发一种更精确的导航技术,以瞄准比预期更小的地点进行样品采集。 OSIRIS-REx任务在确认和驳斥一些科学发现方面都发挥了作用。在这些被证实的发现中,有一项技术是利用来自地球的观测结果来预测小行星上的矿物将富含碳元素并显示出古代水的迹象。一个被证明不成功的发现是贝努将有一个光滑的表面,这是科学家通过测量其表面辐射的热量而预测的。 科学家们将利用从贝努收集到的信息来完善理论模型并改进未来的预测。 伊诺斯说:“这项任务强调了为什么我们必须以多种方式进行科学和探索——从地球和近距离的太空——因为假设和模型就是如此。” 戈达德为OSIRIS-REx提供整体任务管理、系统工程以及安全和任务保证。位于图森的亚利桑那大学的但丁·劳雷塔(Dante Lauretta)是首席研究员。该大学领导科学团队和任务的科学观测计划和数据处理。位于科罗拉多州利特尔顿的洛克希德·马丁航天公司建造了该航天器并提供飞行操作。戈达德和KinetX航天公司负责为OSIRIS-REx航天器导航。OSIRIS-REx是美国宇航局新前沿计划的第三个任务,由位于阿拉巴马州亨茨维尔的美国宇航局马歇尔空间飞行中心为该机构的科学任务理事会华盛顿分部管理。 有关OSIRIS-REx的更多信息,请访问: http://www.nasa.gov/osiris-rex 参考来源: https://www.nasa.gov/press-release/nasa-s-osiris-rex-spacecraft-heads-for-earth-with-asteroid-sample

机智号火星直升机完成了首次单程旅行

机智号火星直升机完成了首次单程旅行

NASA机智号火星直升机的第五次飞行于2021年5月7日被毅力号火星车上的导航摄像机拍摄到。这是它第一次飞到一个新的着陆点。 影像来源:NASA/JPL-Caltech 红色星球的旋翼飞行器驶向南方,以支持进一步研究未来在火星上使用空中侦察机的可能性。 NASA机智号火星直升机今天完成了它在红色星球上的第五次飞行,首次从莱特兄弟机场到南面423英尺(129米)的一个机场的单程飞行。抵达新机场上空后,机智号爬升到33英尺(10米)的高度记录,并在着陆前拍摄了新机场附近的高分辨率彩色图像。 这次飞行代表了旋翼机过渡到新的操作演示阶段。这一阶段将着重于研究从火星上运行的旋翼机能够提供什么样的能力。例如侦察、对火星车无法到达的地区进行空中观察,以及从大气层高度进行详细的立体成像。这些操作和从中获得的经验可以大大有利于未来对火星和其他世界的空中探索。 “火星直升机的第五次飞行是该机构的另一项伟大成就。”NASA航空研究任务局副局长鲍勃·皮尔斯(Bob Pearce)说,“机智号的持续成功证明了汇集整个机构不同技能组合的优势来创造未来的价值,比如在另一个星球上驾驶飞机!” [rml_read_more] NASA机智号火星直升机在2021年5月7日着陆后毅力号火星车上的Mastcam-Z成像器拍摄到。这是直升机的第五次飞行,也是直升机第一次飞往一个新的着陆点。它在空中总共飞行了108秒。 影像来源:NASA/JPL-Caltech/ASU/MSSS 这次飞行开始于美国东部时间下午3点26分(太平洋时间下午12点26分,火星当地时间中午12点33分),持续了108秒。机智号团队选择新的着陆点是基于在上次飞行中收集到的信息——在另一个世界的的首次 空中侦察行动——这使他们能够生成数字高程地图,显示几乎完全平坦的地形,几乎没有障碍物。 “我们告别了我们在火星上的第一个家,莱特兄弟机场,感谢它为行星旋翼飞行器历史性的首次飞行提供的支持,”喷气推进实验室独创性火星直升机的首席工程师鲍勃·巴拉拉姆说。“无论我们从这里走向何方,我们都将永远记住,在我们追寻另一个世界的首次飞行时,来自代顿的两位自行车制造商对我们意味着什么。” 莱特兄弟从证明动力、控制飞行是可能的开始,到试图更好地理解如何运用新技术。以类似的方式,NASA试图通过机智号更多地了解下一代直升机的运作如何有助于未来对红色星球的探索。随着更多的单程航班和更精确的操作,这个新阶段将给机智号带来更多的风险。 机智号在新机场成功着陆后,将等待毅力号发回的任务控制人员的指示。NASA的第五辆火星车也在向南行驶,在那里它将开始科学操作和样本收集。火星车团队的近期策略不需要长时间驾驶,不需要把直升机远远地甩在后面,从而使机智号能够继续进行这种操作演示。 “未来的计划是,以一种不降低毅力号科学操作进度的方式飞行机智号。”巴拉拉姆说。“们可能会在接下来的几周内再进行几次飞行,然后NASA将评估我们的工作情况。我们已经收集够所有我们最初来这里所需要收集的飞行性能数据。现在,这个新的操作演示让我们有机会进一步扩展我们对其他星球上飞行器的知识。” 机智号的更多相关信息 喷气推进实验室负责建造了机智号火星直升机由,同时为NASA总部管理着相关的技术演示。机智号得到了NASA科学任务理事会(Science Mission Directorate)、NASA航空研究任务理事会(Aeronautics Research Mission Directorate)和NASA太空技术任务理事会(Space Technology Mission Directorate)的支持。 NASA的艾姆斯研究中心(Ames Research Center)和兰利研究中心(Langley Research Center)为机智号提供了重要的飞行性能分析和技术援助。 在NASA总部,戴夫·莱弗里(Dave Lavery)是机智号火星直升机的计划主管。在喷气推进实验室,米米·昂是项目负责人,J·鲍勃·巴拉兰姆是总工程师。 想了解更多机智号的相关信息,请访问: https://go.nasa.gov/ingenuity-press-kit 以及 https://mars.nasa.gov/technology/helicopter 毅力号的更多相关信息 毅力号任务在火星上的主要目标是天体生物学,包括寻找古微生物生命的迹象。毅力号将对火星的地质和过去的气候进行表征,为未来人类探索红色星球铺平道路,除此之外,毅力号任务还是第一个收集和储存火星岩石和风化层(regolith,破碎的岩石和尘土)样本的任务。 NASA将与欧洲空间局(European Space Agency,ESA)合作进行后续的飞行任务,送探测器前往火星,从火星表面收集暂时缓存的样本,然后将它们返回地球进行进一步的分析。 喷气推进实验室由位于加利福尼亚州帕萨迪纳市的加州理工学院(Caltech)为NASA代为管理,毅力号的建造和运营管理由喷气推进实验室负责。 毅力号火星探测任务的更多相关信息请见: nasa.gov/perseverance 以及 mars.nasa.gov/mars2020/ 参考来源: https://www.nasa.gov/feature/jpl/nasa-s-ingenuity-mars-helicopter-completes-first-one-way-trip

NASA OSIRIS-REx的最后一次小行星观测运行情况

NASA OSIRIS-REx的最后一次小行星观测运行情况

美国宇航局的OSIRIS-REx任务即将发现它在去年秋天的样本收集活动中在小行星本努(Bennu)表面造成的混乱程度。4月7日,OSIRIS-REx航天器将与本努进行最后一次近距离接触,它将进行最后一次飞越,捕捉小行星表面的图像。在执行飞越时,航天器将从约2.3英里(3.7公里)的距离观察本努——这是自2020年10月20日 “即厨即走 “样品收集活动以来最接近的一次。 在本努的表面受到样品采集事件的严重干扰后,OSIRIS-REx团队决定增加这最后一次飞越。在着陆过程中,航天器的取样头沉入小行星表面1.6英尺(48.8厘米),并同时发射了加压的氮气。航天器的推进器也在后退燃烧过程中调动了大量的表面物质。由于本努的引力非常弱,航天器的这些不同的力量对采样点产生了巨大的影响——在这个过程中发射了许多该地区的岩石和大量的尘埃。这次对贝努的最后一次飞越将使飞行任务小组有机会了解航天器与本努表面的接触如何改变了采样点及其周围区域。 这次单次飞越将模仿2019年任务详细调查阶段进行的观测序列之一。OSIRIS-REx将对本努进行5.9小时的成像,这刚好超过小行星的一个完整的旋转周期。在这个时间段内,航天器的PolyCam成像仪将获得本努的北半球和南半球及其赤道区域的高分辨率图像。然后,该团队将把这些新图像与2019年期间获得的该小行星先前的高分辨率图像进行比较。 这幅艺术家的概念图展示了美国宇航局的奥OSIRIS-REx计划在4月7日最后一次飞越本努小行星时的飞行路线。 影像来源:NASA/Goddard/University of Arizona 该航天器的大多数其他科学仪器也将在飞越期间收集数据,包括MapCam成像仪、OSIRIS-REx热发射光谱仪(OTES)、OSIRIS-REx可见光和红外光谱仪(OVIRS)和OSIRIS-REx激光高度计(OLA)。使用这些仪器将使团队有机会评估航天器上每个科学仪器的当前状态,因为在样品收集活动期间,这些仪器都被灰尘覆盖。了解仪器的健康状况也是NASA评估样本送到地球后可能延长任务机会的一部分。 在OSIRIS-REx飞越本努之后,飞越的数据需要几天时间才能下传到地球。数据下传后,团队将检查图像,了解OSIRIS-REx是如何扰动小行星表面物质的。此时,该团队还将能够评估科学仪器的性能。 OSIRIS-REx将在小行星本努附近停留到5月10日,届时任务将进入返回巡航阶段,开始为期两年的返回地球之旅。当它接近地球时,航天器将抛出样品返回舱(SRC),其中包含从本努收集的岩石和尘埃。然后,SRC将穿越地球大气层,于2023年9月24日在降落伞下降落在犹他州测试和训练场。 一旦样品回收,返回舱将被运送到位于休斯顿的美国宇航局约翰逊航天中心的管理设施,在那里,样品将被取出,分发到世界各地的实验室,使科学家们能够研究太阳系和地球作为一个宜居星球的形成。 美国宇航局位于马里兰州格林贝尔特的戈达德太空飞行中心为OSIRIS-REx提供整体任务管理、系统工程以及安全和任务保障。亚利桑那大学图森分校的丹特-劳雷塔是首席研究员,亚利桑那大学还领导科学团队和任务的科学观测规划和数据处理。位于丹佛的洛克希德-马丁航天公司建造了该航天器并提供飞行操作。戈达德公司和KinetX航空航天公司负责OSIRIS-REx航天器的导航工作。OSIRIS-REx是美国航天局新前沿项目中的第三次任务,该方案由美国航天局设在阿拉巴马州亨茨维尔的马歇尔空间飞行中心为该局设在华盛顿的科学任务局管理。 参考来源: https://www.nasa.gov/feature/goddard/2021/nasa-osiris-rexs-final-asteroid-observation-run

哈勃望远镜向我们展示了未来

哈勃望远镜向我们展示了未来

Sometime in the far distant future, about 4 billion years from now, our Milky Way galaxy will collide with the neighboring Andromeda galaxy, as illustrated in this artist’s rendition. The universe is expanding and accelerating, and collisions between galaxies in close proximity to each other still happen because they are bound by the gravity of the dark matter surrounding them. The Hubble Space Telescope’s deep views of the universe show such encounters between galaxies were more common in the past when the universe was smaller. A century ago astronomers did not realize that M31 was a separate galaxy far beyond the stars of the Milky Way. Edwin Hubble measured its vast distance by uncovering a variable star that served as a “milepost marker.” Hubble went…