NASA发现了天体碰撞产生的巨大碎片云

NASA发现了天体碰撞产生的巨大碎片云

这幅插图描绘了两个小行星大小的天体碰撞的结果:围绕一颗年轻恒星的巨大碎片云。NASA的斯皮策号发现一块碎片云挡住了这颗恒星HD 166191,为科学家提供了发生碰撞的细节。 影像来源:NASA/JPL-Caltech 岩石天体之间的重大碰撞塑造了我们的太阳系。对类似碰撞的观察提供了有关这些事件在其他恒星周围发生频率的线索。 我们太阳系中的大多数岩石行星和卫星,包括地球和月球,都是由太阳系历史早期的大规模碰撞形成或塑造的。通过相互碰撞,岩石天体可以积累更多的物质,增大尺寸,或者它们可以分裂成多个较小的物体。 天文学家使用NASA现已退役的斯皮策太空望远镜,在过去发现了岩石行星正在形成的年轻恒星周围发生此类碰撞的证据。但是,这些观察并没有提供有关碰撞的更多细节,比如所涉及物体的大小。 在天体物理学杂志上的一项新研究中,由亚利桑那大学的凯特·苏领导的一组天文学家报告了首次观测到的由其中一次碰撞产生的碎片云。碎片云在它的恒星前面经过并短暂遮挡了光。天文学家称之为凌日。再加上对恒星大小和亮度的了解,这些观测使研究人员能够在撞击后不久直接确定云团的大小,估计碰撞物体的大小,并观察云团消散的速度。 “目击事件是无可替代的。”亚利桑那大学的乔治·里克是这项新研究的合著者,他说道。 “斯皮策之前报道的所有案件都没有得到解决,只有关于实际事件和碎片云可能是什么样子的理论假设。” 从2015年开始,苏领导的一个团队开始对一颗1000万年前的恒星HD 166191进行常规观测。大约在恒星生命的早期,恒星形成过程中留下的尘埃聚集在一起,形成了一种称为星子的岩石体——未来行星的种子。一旦之前填充这些物体之间空间的气体消散,它们之间灾难性的碰撞就变得很常见。 该团队预计,他们可能会发现HD 166191附近发生碰撞的证据,因此在2015年至2019年期间,他们使用斯皮策望远镜对该系统进行了100多次观测。虽然星子太小,距离太远,望远镜无法分辨,但它们的碰撞会产生大量尘埃。斯皮策探测到了红外光——或比人眼能看到的波长略长的波长。红外线是探测尘埃的理想方法,包括由原行星碰撞产生的碎片。 2018年年中,太空望远镜观测到HD 166191系统变得明显更亮,这表明碎片的产生在增加。在此期间,斯皮策望远镜还探测到一个碎片云挡住了这颗恒星。结合斯皮策对凌日的观测和地面望远镜的观测结果,该团队可以推断出碎片云的大小和形状。 他们的研究表明,云团被拉高了,估计的最小面积是恒星的三倍。然而,斯皮策望远镜所观测到的不断变亮的红外线表明,只有一小部分云团从恒星前方经过,而这一事件产生的碎片覆盖的面积是恒星的数百倍。 要产生这么大的云,主碰撞中的物体必须有矮行星那么大,就像我们太阳系中的灶神星——一个330英里(530公里)宽的天体,位于火星和木星之间的主小行星带。最初的碰撞产生了足够的能量和热量使一些物质汽化。它还引发了第一次碰撞的碎片和系统中其他小物体之间的碰撞连锁反应,这可能产生了斯皮策观测到的大量尘埃。 在接下来的几个月里,巨大的尘埃云体积增大,变得更加透明,这表明尘埃和其他碎片正在迅速扩散到整个年轻的恒星系统中。到2019年,经过恒星前面的云团不再可见,但该系统包含的尘埃是斯皮策观测到云团之前的两倍。这篇论文的作者认为,这些信息可以帮助科学家检验类地行星是如何形成和生长的理论。 “通过观察年轻恒星周围轻恒星周围的尘埃碎片盘,我们基本上可以回顾过去,看看可能塑造了我们自己的太阳系的过程。”苏说。 “了解这些系统中碰撞的结果,我们还可以更好地了解围绕其他恒星形成岩石行星的频率。” 关于斯皮策的更多信息 斯皮策在其生命周期内收集的全部科学数据可通过斯皮策数据档案馆向公众提供,该档案馆位于加利福尼亚州帕萨迪纳加州理工学院IPAC红外科学档案馆中。喷气推进实验室是加州理工学院的一个部门,为位于华盛顿的NASA科学任务理事会管理斯皮策号任务。科学操作在加州理工学院IPAC的斯皮策科学中心进行。航天器操作基地设在科罗拉多州利特尔顿的洛克希德·马丁航天公司。 更多关于NASA斯皮策太空望远镜的信息,请访问: https://www.jpl.nasa.gov/missions/spitzer-space-telescope 和 https://www.ipac.caltech.edu/project/spitzer 参考来源: https://www.nasa.gov/feature/jpl/nasa-spots-giant-debris-cloud-created-by-clashing-celestial-bodies

詹姆斯·韦伯太空望远镜达到校准里程碑,光学系统工作成功

詹姆斯·韦伯太空望远镜达到校准里程碑,光学系统工作成功

在完成关键的镜面校准步骤后,NASA的詹姆斯·韦伯太空望远镜团队预计,韦伯的光学性能将能够达到或超过天文台的科学目标。 3月11日,韦伯团队完成了被称为“精细相位”的校准阶段。在韦伯光学望远镜单元调试的这个关键阶段,每一个光学参数都经过了检查和测试,达到或超过了预期。研究团队还发现,韦伯的光路没有严重问题,也没有可测量的污染或堵塞。该天文台能够成功地收集来自遥远物体的光线,并将其毫无问题地传送到仪器上。 虽然这张图像的目的是聚焦在中心的明亮恒星上,以进行校准评估,但韦伯的光学系统和NIRCam非常敏感,以至于在背景中看到的星系和恒星都显示出来。在韦伯望远镜的校准阶段,即所谓的“精细相位”,每个主镜段都经过调整,仅使用NIRCam仪器就可以生成同一恒星的统一图像。这张名为2MASS J17554042+6551277的恒星图像使用红色滤镜优化视觉对比度。 影像来源:NASA/STScI 虽然距离韦布最终发布其新的宇宙观测结果还有几个月的时间,但实现这一里程碑意味着团队相信韦伯的首创光学系统正在尽可能地工作。 “20多年前,韦伯团队着手建造有史以来最强大的太空望远镜,并提出了大胆的光学设计,以满足苛刻的科学目标。”华盛顿NASA科学任务理事会副主任托马斯·左布臣说。“今天,我们可以说,设计即将实现。” 虽然地球上一些最大的地面望远镜使用分段主镜,但韦伯是太空中第一台使用这种设计的望远镜。这个21英尺4英寸(6.5米)的主镜(太大而无法安装在火箭整流罩内)由18个六角铍镜段组成。它必须折叠起来才能发射,然后在太空中展开,接着将每个主镜段再纳米的范围内调整,以形成一个单一的镜面。 位于马里兰州绿带的NASA戈达德太空飞行中心的韦伯光学望远镜元件经理李·范伯格说:“除了实现韦伯将实现的不可思议的科学之外,设计、建造、测试、发射和现在运营这座天文台的团队还开创了一种建造太空望远镜的新方法。” NASA的韦伯达到校准里程碑,光学系统工作成功 视频来源:NASA’s Goddard Space Flight Center 随着望远镜校准的精细相位阶段完成,团队现在已经将韦伯的主成像仪——近红外相机与天文台的镜面完全对齐。 “我们已经将望远镜完全对准并聚焦在一颗恒星上,性能超过了规范。我们都为这对科学的意义感到兴奋。”NASA戈达德韦伯副光学望远镜元件经理丽塔·凯斯基·库哈说。“我们现在知道我们建造了正确的望远镜。” 这张新的“自拍”是使用NIRCam仪器内部的一个专门的瞳孔成像镜头拍摄,该仪器旨在拍摄主镜段的图像,而不是太空的图像。该配置在科学操作期间不使用,仅用于工程和校准目的。在这张照片中,韦伯所有的18个主镜段都一致地收集来自在同一颗恒星的光线。 影像来源:NASA/STScI 在接下来的六周里,该团队将在最终科学仪器准备工作之前完成剩余的校准步骤。该团队将进一步校准望远镜,包括近红外光谱仪、中红外仪器、近红外成像仪和无缝光谱仪。在该过程的这一阶段,算法将评估每个仪器的性能,然后计算最终的校正,以在所有科学仪器中实现校准良好的望远镜。在此之后,韦伯的最终校准步骤将开始,团队将调整主镜段中任何微小的残留定位误差。 该团队有望在5月初(如果不是更早的话)之前完成光学望远镜元件校准的所有工作,然后再进行大约两个月的科学仪器准备工作。韦伯的第一张全分辨率图像和科学数据将于今年夏天发布。 韦伯是世界上首屈一指的太空科学天文台,一旦全面运行,它将帮助解决我们太阳系中的谜团,观察其他恒星周围的遥远世界,探索我们宇宙的神秘结构和起源,以及我们在宇宙中的位置。韦伯是一个国际项目,由NASA和欧洲航天局(ESA)以及加拿大航天局共同领导。 有关韦伯任务的更多信息,请访问: https://www.nasa.gov/webb 参考来源: https://www.nasa.gov/press-release/nasa-s-webb-reaches-alignment-milestone-optics-working-successfully

谁需要π?

谁需要π?

Today is Pi Day, March 14, 2022! Each year NASA celebrates pi with a host of educational activities that focus on its importance to our missions. This “Pi in the Sky” math challenge gives students a chance to take part in recent discoveries and upcoming celestial events, all while using math and pi just like NASA scientists and engineers. In this problem, students use the mathematical constant pi to calculate the volume and density of Mars’ liquid core. Since 2018, the InSight lander has studied the interior of Mars by measuring vibrations from marsquakes and the “wobble” of the planet as it rotates on its axis. Through careful analysis of the data returned from InSight, scientists were able to measure the size of Mars’ liquid…

NASA的普赛克获得了巨大的太阳能电池阵列,用于前往富含金属的小行星

NASA的普赛克获得了巨大的太阳能电池阵列,用于前往富含金属的小行星

NASA的普赛克航天器上的两个太阳能阵列中的一个已成功部署在JPL的高层高湾2号洁净室。在前往火星和木星之间的小行星带执行任务期间,这两个阵列将为航天器及其科学仪器提供动力。 影像来源:NASA/JPL加州理工学院 太阳能电池阵列安装好后,航天器接近其最终配置,计划于8月发射。 NASA的普赛克任务已经基本准备就绪,即将进入太阳系——一个15亿英里(24亿公里)的太阳能旅程,前往一颗神秘的、富含金属的同名小行星。两个太阳能电池阵列已经连接到航天器的机身上,纵向展开,然后重新折叠存放。这次测试使飞船离8月发射升空更近了一步。 “第一次看到航天器完全组装好是一项巨大的成就;我们感到非常自豪。”在NASA位于南加州的喷气推进实验室领导该任务的组装、测试和发射操作的布莱恩·伯恩说。“这是真正有趣的部分。你感觉这一切都融合在一起了。你感觉到了能量的变化和转移。” 这座面积为800平方英尺(75平方米)的五块面板、十字形太阳能电池阵列是喷气推进实验室有史以来安装的最大的太阳能电池阵列。喷气推进实验室在过去几十年中建造了许多航天器。当太阳能电池阵列在飞行中完全展开时,航天器的大小将相当于一个单打网球场。经过3年半的太阳能巡航后,航天器将于2026年抵达小行星普赛克。普赛克最宽处为173英里(280公里),被认为金属含量异常丰富。该航天器将花费近两年的时间,不断靠近小行星轨道对其进行研究。 冒险前往远离太阳的火星和木星之间的小行星带,对这项任务提出了挑战,该任务采用了标准的地球轨道商业卫星技术,以便在寒冷和黑暗的深空中使用。在地球附近,太阳能电池阵列产生21千瓦的电能,足以为三到四个普通美国家庭供电。但在普赛克那里,太阳能阵列只能生产大约2千瓦的电——仅够一个吹风机使用。 其基础技术与安装在家里的太阳能电池阵列没有太大的不同,但普赛克的太阳能电池板效率高、重量轻、耐辐射,能够在较少的阳光下提供更多的电力,加利福尼亚州帕洛阿尔托的迈萨科技公司的技术总监彼得·洛德说。帕洛阿尔托是阵列和太阳能电力推进底盘的建造地。“这些太阳能阵列的设计是为了在远离太阳的弱光条件下工作。”他补充道。 在喷气推进实验室的洁净室进行部署测试之前,工程师们检查了普赛克的两块太阳能电池阵列中的一块。如图所示,在发射前,太阳能阵列被折叠并与底盘平齐,然后在飞行中部署。 影像来源:NASA/JPL加州理工学院 在喷气推进实验室的洁净室内成功安装和部署了三个中心面板之后,普赛克的太阳能阵列被折叠到底盘上,并储存起来,以备进一步的航天器测试。这些阵列将返回迈萨科技公司,迈萨科技公司有专门的设备来测试两个垂直交叉面板的部署。今年春天晚些时候,这些阵列将在佛罗里达州美国宇航局肯尼迪航天中心与航天器重聚,并存放在卡纳维拉尔角发射。 发射大约一小时后,太阳能阵列将展开并锁定到位,每个阵列展开需要7.5分钟。然后,它们将为前往小行星普赛克的旅程提供所有动力,以及操作科学仪器所需的动力:测量小行星可能具有的任何磁场的磁强计、用于拍摄和绘制其表面的成像仪,以及揭示该表面组成的光谱仪。这些阵列还为将测试高数据速率激光通信的深空光通信技术演示提供动力。 这些仪器传递给科学家的信息将帮助他们更好地了解这颗神秘的小行星。对普赛克异常高的金属含量的一个可能解释是,它形成于太阳系历史的早期,要么是小行星的残余核心材料(岩石行星的组成部分之一),要么是从未熔化的原始物质。这项任务的目的是找出并帮助回答有关地球自身金属核心和太阳系形成的基本问题。 更多关于任务的信息 亚利桑那州立大学负责领导普赛克任务。喷气推进实验室由加州帕萨迪纳的加州理工学院为NASA管理,负责任务的总体管理、系统工程、集成和测试以及任务运行。迈萨科技公司提供大功率太阳能电力推进航天器底盘。普赛克于2017年被选为NASA探索计划的第14个任务。 欲了解更多有关NASA普赛克任务的信息,请访问: http://www.nasa.gov/psyche 和 https://psyche.asu.edu/ 参考来源: https://www.nasa.gov/feature/jpl/nasa-s-psyche-gets-huge-solar-arrays-for-trip-to-metal-rich-asteroid

NuSTAR用杂散光进行照明发现

NuSTAR用杂散光进行照明发现

这张插图显示了NASA在太空中的NuSTAR X射线望远镜。两个笨重的部件由一个33英尺(10米)的结构隔开,该结构称为可展开桅杆或吊杆。光在桅杆的一端收集,并沿桅杆聚焦,然后撞击另一端的探测器。 影像来源:NASA/JPL-Caltech 近10年来,NASA的NuSTAR(核子光谱望远镜阵列)X射线太空天文台一直在研究宇宙中一些能量最高的物体,比如碰撞的死恒星和吞噬热气体的巨大黑洞。在这段时间里,科学家们不得不处理从天文台侧面泄漏的杂散光,这可能会干扰观测,就像外部噪音会淹没电话一样。 但现在,团队成员已经知道如何利用散乱的X射线来了解NuSTAR外围视觉中的物体,同时也进行正常的目标观测。这一进展有可能使核星提供的洞见成倍增加。《天体物理学杂志》上的一篇新科学论文描述了首次使用NuSTAR的杂散光观测来了解一个宇宙物体——在这种情况下,是一颗中子星。 但现在团队成员已经想出了如何使用这种杂散的X射线光来了解NuSTAR周边视觉中的物体,同时还能进行正常的有针对性的观测。这一发展有可能使NuSTAR提供的洞察力成倍增加。《天体物理学杂志》上的一篇新科学论文描述了NuSTAR的杂散光观测首次用于了解宇宙物体——在本例中是中子星。 中子星是一颗恒星坍塌后遗留下来的物质,是宇宙中密度最大的天体之一,仅次于黑洞。它们强大的磁场会捕获气体粒子并将它们汇集到中子星的表面。随着粒子被加速和激发,它们会释放出NuSTAR可以探测到的高能X射线。 这项新研究描述了一个名为SMC X-1的系统,该系统由围绕银河系(地球的母星系)运行的两个小星系之一中的一颗活恒星运行的中子星组成。用望远镜观察时,SMC X-1的X射线输出的亮度似乎变化很大,但NuSTAR和其他望远镜数十年的直接观测揭示了这种波动的模式。科学家们已经查明了SMC X-1在X射线望远镜研究时亮度变化的几个原因。例如,中子星每次在绕行轨道上下降到活恒星后面时,X 射线的亮度就会变暗。根据该论文,杂散光数据足够敏感,能够捕捉到一些记录良好的变化。 “我认为这篇论文表明这种杂散光方法是可靠的,因为我们在SMC X-1中观测到了中子星的亮度波动,我们已经通过直接观测证实了这一点,”加利福尼亚州帕萨迪纳加州理工学院的天体物理学家、这项新研究的主要作者麦金利·布伦巴克说。“展望未来,如果我们能够在不知道物体亮度是否有规律变化的情况下,使用杂散光数据来观察物体,并可能使用这种方法来检测变化,那就太棒了。” 形式与功能 新方法之所以可行,是因为NuSTAR的形状类似于哑铃或狗骨:它在一个狭窄的、33英尺长(10米长)的结构(称为可展开式桅杆或吊杆)的两端有两个笨重的部件。通常,研究人员将其中一个笨重的末端(包含光学器件或收集 X 射线的硬件)指向他们想要研究的对象。光线沿着桅杆传播到位于航天器另一端的探测器。两者之间的距离是聚焦光线所必需的。 但是杂散光也会通过桅杆的侧面进入探测器,绕过光学元件。它与来自望远镜直接观察到的任何物体的光一起出现在NuSTAR的视野中,而且通常很容易被肉眼识别:它形成了一圈从图像两侧发出的微弱光。 (毫不奇怪,杂散光对许多其他太空和地面望远镜来说都是个问题。) 在过去的几年里,NuSTAR团队的一组成员将杂散光与NuSTAR的各种观测结果分离开来。在确定了每次观测外围的明亮、已知的X射线源后,他们使用计算机模型,根据附近的明亮物体,预测应该出现多少杂散光。他们还查看了NuSTAR几乎所有的观测结果,以确认杂散光的迹象。该团队创建了一个包含大约80个物体的目录,NuSTAR为这些物体收集了杂散光观测数据,并将该集合命名为“流浪猫(StrayCats)”。 “想象一下,坐在一个安静的电影院里,看一部戏剧,听到隔壁上演的动作片中的爆炸声。”加州理工学院高级研究科学家、NuSTAR团队成员布莱恩·格里芬斯泰特说。“在过去,这就是杂散光的样子——分散了我们的注意力。现在我们有了工具,可以将额外的噪音转化为有用的数据,开辟了使用NuSTAR研究宇宙的全新方式。” 当然,杂散光数据不能取代NuSTAR的直接观测。除了杂散光无法聚焦外,NuSTAR可以直接观察到的许多物体都太微弱,无法出现在杂散光目录中。但是格里芬斯泰特说,加州理工学院的多名学生仔细研究了这些数据,发现了周边物体快速变亮的例子,这可能是任何数量的戏剧性事件,比如中子星表面的热核爆炸。观察中子星亮度变化的频率和强度可以帮助科学家破译这些天体发生了什么。 “如果你试图寻找X射线源长期行为或亮度的模式,杂散光观测可能是一种更频繁检查并建立基线的好方法。”加州理工学院NASA哈勃奖学金项目爱因斯坦研究员、流浪猫团队成员蕾妮·卢德拉姆说。“它们还可以让我们在我们没有预料到的情况下,或者当我们通常无法将NuSTAR直接指向这些物体时,捕捉到这些物体的奇怪行为。杂散光观测不能取代直接观测,但更多的数据总是好的。” 关于任务的更多信息 NuSTAR于2012年6月13日发射。这是一项由加州理工学院领导、由喷气推进实验室为华盛顿NASA科学任务理事会管理的小型探索任务,它是与丹麦技术大学(DTU)和意大利航天局(ASI)合作开发的。望远镜光学系统由哥伦比亚大学、美国宇航局位于马里兰州格林贝尔特的戈达德太空飞行中心和 DTU建造。 该航天器由位于弗吉尼亚州杜勒斯的轨道科学公司建造。NuSTAR的任务运营中心位于加州大学伯克利分校,官方数据档案位于NASA的高能天体物理学科学档案研究中心。ASI提供任务的地面站和镜像数据存档。加州理工学院为NASA管理JPL。 有关NuSTAR的更多信息,请访问: http://www.nasa.gov/nustar 和 www.nustar.caltech.edu 参考来源: https://www.nasa.gov/feature/jpl/nasa-s-nustar-makes-illuminating-discoveries-with-nuisance-light

新的太阳任务,以帮助NASA更好地了解地日环境

新的太阳任务,以帮助NASA更好地了解地日环境

太阳发出中等水平的太阳耀斑,并于美国东部时间2015年10月1日晚上8点13分达到顶峰,美国国家航空航天局(NASA)的太阳动力学天文台(SDO)捕捉到了这一事件的图像。 来源:NASA/SDO NASA已选定两项科学任务:多缝隙太阳探测器(MUSE)任务和HelioSwarm任务,以帮助进一步提高人类对太阳活动、日地关系以及不断变化的空间环境的理解。这两项任务有助于加深人类对宇宙的理解,并提供关键信息以帮助保护宇航员、卫星和通信信号,例如全球定位系统(GPS)。 NASA总部负责科学事务的副局长托马斯·祖尔布钦(Thomas Zurbuchen)表示 :“MUSE任务和HelioSwarm任务将为太阳大气和空间天气提供更为深入的新见解。这两项任务不仅扩展了NASA其他太阳物理学任务的科学内容,还为了解太阳奥秘提供了独特视角和创新方法。” MUSE任务 MUSE任务将帮助科学家了解日冕加热和太阳耀斑喷发驱动机制等空间天气事件的基础问题。该任务将通过多缝隙太阳探测器(Multi-slit Solar Explorer, 简称MUSE)来观察太阳的极端紫外线辐射,并获得有史以来分辨率最高的太阳过渡区和日冕的图像,从而更深入地了解太阳大气的物理性质。 该任务还将提供来自太阳物理学研究的补充性观测数据,如极紫外光谱望远镜(Extreme UltraViolet Spectroscopic Telescope)和地面观测站等。 NASA总部太阳物理学部主任尼古拉·福克斯(Nicola Fox)表示 :“MUSE任务将助力填补与日地关系相关的关键知识鸿沟。它将为空间天气提供更多见解,并对太阳物理学任务组中的一系列其他任务进行补充。” MUSE任务的首要目标是研究日冕加热和不稳定的原因,如耀斑和日冕物质抛射,并深入了解日冕的基本等离子体特性。探测器将在聚焦于太阳上太阳活动活跃的一片广阔区域的视场中拍摄太阳耀斑带演变的高分辨率图像。 MUSE任务的首席研究员是来自位于加州帕洛阿尔托的洛克希德-马丁先进技术中心(LMATC)的巴特·德庞蒂奥(Bart DePontieu)。这项任务的预算为1.92亿美元。LMATC负责管理该任务。 HelioSwarm任务 HelioSwarm任务是一个由九个航天器组成的航天器集群,将首次对磁场波动和被称作太阳风湍流的太阳风活动进行多尺度的空间测量。太阳最外层的大气层,即日球层,涵盖太阳系中的一片广阔区域。太阳风在日球层中传播,它们与行星磁层的相互作用以及日冕物质抛射等干扰活动会对太阳风的的湍流造成影响。 研究大面积区域的太阳风湍流需要从空间的不同点位同时对等离子体进行多点测量。HelioSwarm任务由一个中心航天器和八个共轨小卫星组成,这些卫星彼此之间以及和中心航天器之间都有一定距离。中心航天器将与每个小卫星保持无线电通信。卫星群和地球之间的所有无线电通信将通过中心航天器以及NASA深空网络进行。 NASA总部太阳物理学部副主任佩格·卢斯(Peg Luce)表示:“HelioSwarm任务的小卫星作为一个航天器集群共同运行的技术创新为研究太阳风湍流及其演化提供了独一无二的能力。” HelioSwarm任务的首席研究员是来自新罕布什尔大学的哈兰·斯彭斯(Harlan Spence)。该任务的预算为2.5亿美元。NASA艾姆斯研究中心(Ames Research Center)负责管理该任务。 太阳物理学探索者计划(Heliophysics Explorers Program)为上述两项任务提供资金并进行项目监督,NASA戈达德太空飞行中心的探索者计划办公室负责项目管理。 有关太阳物理学任务的更多信息,请访问: https://www.nasa.gov/sunearth 参考来源: https://www.nasa.gov/press-release/new-sun-missions-to-help-nasa-better-understand-earth-sun-environment

帕克太阳探测器确认在可见光下拍摄到金星表面的第一张图像

帕克太阳探测器确认在可见光下拍摄到金星表面的第一张图像

NASA的帕克太阳探测器首次从太空拍摄了金星表面的可见光图像。 金星的表面被厚厚的云层笼罩,通常看不见。但在最近两次飞越金星时,帕克使用其广角成像仪或 WISPR,以可见光谱的波长(人眼可以看到的光的类型)对整个夜面进行成像,并延伸到近红外波段。 这些图像结合成一段视频,揭示了从金星表面发出的微弱辉光,显示了大陆地区、平原和高原等独特特征。在这颗行星周围的大气中也可以看到一个由氧气组成的发光光晕。 “我们对帕克太阳探测器迄今为止提供的科学见解感到兴奋。”NASA总部太阳物理部门主任尼古拉·福克斯说。“帕克的表现继续超出我们的预期,我们很高兴在我们的重力辅助机动过程中获得的这些新观测结果能够以意想不到的方式帮助推进金星研究。” 这颗行星通常被称为地球的孪生兄弟,它的这些图像可以帮助科学家更多地了解金星的表面地质情况,那里可能存在什么矿物质,以及这颗行星的演化。考虑到行星之间的相似性,这些信息可以帮助科学家理解为什么金星变得不适宜居住,而地球变成了绿洲。 “金星是天空中第三亮的天体,但直到最近,我们还没有太多关于金星表面的信息,因为我们的视线被厚厚的大气层挡住了。”这项新研究的主要作者、华盛顿海军研究实验室的物理学家布莱恩·伍德说。“现在,我们终于第一次从太空中看到了金星可见光波段的表面。” NASA的帕克太阳探测器已经从太空拍摄了金星表面的第一张可见光图像。 影像来源:NASA’s Goddard Space Flight Center/Joy Ng 意想不到的能力 2020年7月,帕克第三次飞越金星时拍摄了第一张WISPR金星图像,航天器利用这一飞越使其轨道更接近太阳。WISPR的设计目的是观察太阳大气和风中的微弱特征,一些科学家认为,他们可能可以使用WISPR来拍摄帕克飞越金星时遮住金星的云层顶部。 “我们的目的是测量云层的速度。”WISPR项目科学家安杰洛斯·沃利达斯说,他是这篇新论文的合著者,也是约翰霍普金斯大学应用物理实验室的研究员。 但WISPR不仅能看到云层,还能看到金星表面。这些照片如此惊人,以至于科学家们在2021年2月第四次飞越时再次打开了摄像机。在2021年的飞越期间,航天器的轨道和金星完美地排列在一起,WISPR可以完整地拍摄金星的背面。 伍德说:“这些图片和视频让我震惊。” 当帕克太阳探测器第四次飞越金星时,它的WISPR仪器捕捉到了这些图像,并将其串成视频,显示了金星的夜面。 影像来源:NASA/APL/NRL 云层阻挡了大部分来自金星表面的可见光,但波长最长的可见光(接近红外波长)却能穿透云层。在白天,这种红光在金星云层顶部反射的明亮阳光中消失了,但在黑夜中,WISPR相机能够拍摄到这种由表面散发出的的热量引起的微弱光芒的令人难以置信的图像。 “金星的表面,即使在夜间,也大约是 860度,”伍德说。“它的温度如此之高,以至于金星的岩石表面明显在发光,就像一块从锻炉拉出来的铁。” 当帕克飞越金星时,WISPR接收到从470纳米到800纳米的波长范围。其中一些光是近红外光(我们看不到的波长,但可以感知为热),还有一些在可见光范围内,波长介于380纳米到750纳米之间。 金星的新光芒 1975年,金星9号着陆器在金星着陆后首次发回了金星表面诱人的一瞥。从那以后,雷达和红外仪器进一步揭示了金星的表面,这些仪器可以通过人眼看不见的光的波长透过厚厚的云层进行窥视。NASA的麦哲伦任务在20世纪90年代使用雷达绘制了第一张地图,JAXA的赤月号航天器在2016年到达金星轨道后收集了红外图像。帕克的新图像进一步证实了这些发现,将观测范围扩大到我们所能看到的边缘的红色波长。 WISPR图像显示了金星表面的特征,如大陆区域阿佛洛狄特地、特拉斯地区高原和艾诺平原。由于高海拔地区比低海拔地区要冷85华氏度左右,它们在明亮的低地中以黑色斑块的形式出现。这些特征也可以在以前的雷达图像中看到,比如麦哲伦拍摄的那些。 在WISPR图像(上)中看到的表面特征与在麦哲伦任务(下)中看到的特征相匹配。 影像来源:NASA/APL/NRL(上), Magellan Team/JPL/USGS(下) 除了观察表面特征,新的WISPR图像将帮助科学家更好地了解金星的地质和矿物构成。加热时,材料会发出独特波长的光。通过将新图像与以前的图像相结合,科学家们现在有了更广泛的波长范围来研究,这可以帮助确定金星表面有哪些矿物质。这种技术以前曾被用于研究月球表面。未来的任务将继续扩大这一波长范围,这将有助于我们对宜居行星的了解。 这些信息也可以帮助科学家了解地球的演化。虽然金星、地球和火星都是在同一时期形成的,但它们今天却大不相同。火星上的大气层只是地球大气层的一小部分,而金星的大气层要厚得多。科学家们怀疑火山活动在金星稠密的大气形成过程中起到了一定作用,,但需要更多的数据来了解其原因。新的WISPR图像可能为火山如何影响金星大气层提供线索。 除了表面发光,新图像还显示,在金星边缘有一个明亮的环,这是由氧原子在大气中发出的光造成的。这种光被称为气辉,它也存在于地球的大气层中,从太空中可以看到,有时晚上从地面上也可以看到。 飞越科学 虽然帕克太阳探测器的主要目标是太阳科学,但金星的飞越提供了令人兴奋的额外数据的机会,这是该任务发射时所没有预料到的。 WISPR还拍摄了金星轨道尘埃环的图像(金星绕太阳轨道上散布着微观粒子的环形环形轨道),FIELDS仪器对金星大气中的无线电波进行了直接测量,帮助科学家了解在太阳活动的11年周期中上层大气是如何变化的。 2021年12月,研究人员发表了关于发现彗星状尾部等离子体的新发现,这一现象被称为“尾部射线”。新的研究结果显示,这条粒子尾巴从金星大气层向外延伸了近5000英里。这条尾巴可能是金星的水如何从这颗行星逃逸出来的,造成了它目前的干燥和不适宜居住的环境。 虽然接下来两次飞越可能无法让帕克拍摄到金星的夜景,但科学家们将继续使用帕克的其他仪器来研究金星的太空环境。2024年11月,该航天器将有最后一次机会在其第七次也是最后一次飞越金星表面时拍摄照片。 金星研究的未来 帕克太阳探测器由位于马里兰州劳雷尔的约翰·霍普金斯应用物理实验室建造和运营,它并不是第一个收集飞越金星的额外数据的任务,但它最近的成功激励了其他任务在经过金星时打开他们的仪器。除了帕克之外,欧洲航天局的贝皮科伦坡任务以及欧洲航天局和NASA的太阳轨道飞行器任务已经决定在未来几年的飞越期间收集数据。 随着NASA的DAVINCI和VERITAS任务以及ESA的EnVision任务,更多的航天器将在本十年末飞往金星。这些任务将有助于对金星的大气层进行成像和采样,并用红外波长以更高的分辨率重新绘制金星表面。这些信息将有助于科学家确定金星表面的矿物组成,并更好地了解金星的地质历史。 “通过研究金星的表面和大气层,我们希望即将到来的任务将有助于科学家了解金星的演变,以及是什么导致金星今天不适合居住。”NASA总部行星科学部主任洛里·格莱茨说。“虽然DAVINCI和VERITAS都将主要使用近红外成像,但帕克的结果显示了对广泛波长进行成像的价值。” 参考来源: https://www.nasa.gov/feature/goddard/2022/sun/parker-solar-probe-captures-its-first-images-of-venus-surface-in-visible-light-confirmed

好奇号火星车测量火星上有趣的碳特征

好奇号火星车测量火星上有趣的碳特征

NASA的好奇号火星车在2021年3月19日日落后拍摄到这些云,这是火星探测器任务的第三千零六十三火星日。该图像由21个单独的图像拼接在一起,并进行颜色校正,以使场景看起来就像人眼看到的一样。 影像来源:NASA/Caltech-JPL/MSSS 在分析了NASA好奇号火星车从火星表面采集的粉状岩石样本后,科学家今天宣布,其中几个样本富含一种碳,这种碳在地球上与生物过程有关。 尽管这一发现很有趣,但它并不一定指向火星上的古代生命,因为科学家们尚未发现确凿的支持证据,证明火星上存在古代或现代生物,例如古代细菌产生的沉积岩层,或复杂有机物的多样性生命形成的分子。 “我们在火星上发现的东西非常有趣,但我们真的需要更多的证据来证明我们已经发现了生命。”保罗·马哈菲说。他曾担任好奇号火星样品分析(SAM)化学实验室的首席研究员,直到2021年12月从马里兰州格林贝尔特的NASA戈达德太空飞行中心退休。“因此,我们正在研究如果不是生命的话,还有什么可能导致我们看到的碳特征。” 在他们将于1月18日在《美国国家科学院院刊》上发表的研究报告中,好奇号科学家对他们检测到的不寻常的碳信号提供了几种解释。他们的假设部分是基于地球上的碳信号,但科学家警告称,这两个行星是如此不同,他们无法根据地球上的例子得出明确的结论。 “最困难的事情是放开地球,放开我们的偏见,真正尝试了解火星上的化学、物理和环境过程的基本原理。”参与碳研究的戈达德天体生物学家詹妮弗·艾格布罗德说。此前,艾格布罗德带领好奇号科学家组成的一个国际团队在火星表面探测到无数的有机分子,这些分子中含有碳。 “我们需要打开我们的思想,跳出固有的思维模式,”艾格布罗德说,“这就是这篇论文所做的。” 好奇号科学家在他们的论文中提出的生物学解释受到地球生命的启发。它涉及地表中的古老细菌,当它们将甲烷释放到大气中时,它们会产生独特的碳特征,而紫外线会将这种气体转化为更大、更复杂的分子。这些新分子会像雨点一样降落到地表,现在可以在火星岩石中以其独特的碳特征保存下来。 好奇号科学家在他们的论文中提出的生物学解释受到了地球生命的启发。它涉及到地表中的古老细菌,当它们将甲烷释放到大气中,紫外线将甲烷转化为更大、更复杂的分子时,它们可能会产生一种独特的碳特征。这些新分子如雨点般降落到火星表面,现在我们可以找到保存在火星岩石中独特的碳标记。 另外两个假设提供了非生物学的解释。一种观点认为,碳特征可能是由紫外线与火星大气中的二氧化碳气体相互作用产生的,产生了新的含碳分子,这些分子会沉降到火星表面。另一种推测认为,这些碳可能是数亿年前太阳系穿过一个富含检测到的碳类型的巨大分子云时发生的罕见事件留下的。 为了分析火星表面的碳,豪斯的团队使用了SAM实验室内的可调谐激光光谱仪(TLS)仪器。SSAM将来自火星盖尔陨石坑不同地质位置的24个样本加热到约1500华氏度(850摄氏度),以释放其中的气体。然后TLS测量了一些在加热过程中被释放的还原碳的同位素。同位素是由于中子数量不同而具有不同质量元素的原子,它们有助于理解行星的化学和生物演化。 碳元素尤其重要,因为地球上所有生命中都有碳元素;它在空气、水和地面之间不断地循环流动,同位素测量方法使我们很好地理解了这一点。 例如,与较重的碳13原子相比,地球上的生物使用较小、较轻的碳12原子来代谢食物或进行光合作用。因此,远古岩石中的碳12明显多于碳13,此外还有其他证据表明,科学家们正在研究与生命相关的化学特征。观察这两种碳同位素的比例有助于地球科学家了解他们所观察的生命类型以及它们所生活的环境。 在火星上,好奇号的研究人员发现,与科学家在火星大气和陨石中测量的数据相比,他们的样本中近一半含有惊人的大量碳12。研究人员报告说,这些样本来自盖尔陨石坑的五个不同地点,这可能是因为所有地点都有保存完好的古代表面。 “在地球上,会产生我们在火星上检测到的碳信号的过程是生物过程,”豪斯说。 “我们必须了解相同的解释是否适用于火星,或者是否还有其他解释,因为火星非常不同。” 火星之所以独特,是因为它的碳同位素组合可能与45亿年前的地球不同。火星更小、更冷、重力更弱,大气中的气体也不同。此外,火星上的碳可以在没有任何生命参与的情况下循环。 华盛顿卡内基科学研究所的好奇科学家安德鲁·斯蒂尔说:“地球上有很大一部分碳循环涉及生命,因为生命,地球上有很大一部分碳循环我们无法理解,因为我们看到的每一个地方都有生命。” 这幅马赛克拼图是由NASA的好奇号火星车上的桅杆相机在任务的第2729个火星日拍摄的图像制成的。它显示了盖尔陨石坑中斯汀森砂岩形成的地貌。好奇号在这个一般的位置钻了一个爱丁堡钻孔,从中提取的样本富含碳12。 影像来源:NASA/Caltech-JPL/MSSS 斯蒂尔指出,对于火星上碳循环的理解,以及如何解释同位素比率和导致这些比率的非生物活动,科学家们还处于早期阶段。好奇号于2012年抵达火星,是第一个携带工具研究火星表面碳同位素的探测器。其他的任务已经收集了大气中同位素特征的信息,科学家已经测量了在地球上收集到的火星陨石的比例。 “定义火星上的碳循环绝对是试图了解生命如何适应该循环的关键,”斯蒂尔说。“我们在地球上确实成功地做到了这一点,但我们才刚刚开始为火星定义碳循环。” 好奇号科学家将继续测量碳同位素,看看当火星车访问其他疑似保存完好的古代表面时,是否会得到类似的特征。为了进一步测试有关产甲烷微生物的生物学假设,好奇号团队希望分析从火星表面释放出来的甲烷烟羽中的碳含量。火星车在 2019 年意外地遇到了这样的羽流,但无法预测这种情况是否会再次发生。此外,研究人员指出,这项研究为NASA毅力号火星车背后的团队提供了指导,帮助他们收集最佳样本类型,以确认碳特征,并确定它是否来自生命。毅力号正在从火星表面收集样本,以备将来返回地球。 好奇号的任务由NASA位于南加州的喷气推进实验室(JPL)领导; JPL 由加州理工学院管理。 参考来源: https://www.nasa.gov/feature/goddard/2022/nasa-s-curiosity-rover-measures-intriguing-carbon-signature-on-mars

NASA的斯皮策在天文学会简报上阐述系外行星

NASA的斯皮策在天文学会简报上阐述系外行星

行星XO-3b有一个内部热源,可能来自潮汐加热,这是由于其母星的引力挤压行星内部造成的。产生的热量可能会因行星略呈椭圆形的轨道(如右图所示)而增加,这意味着行星的形状更像椭圆形而不是圆形。 影像来源:NASA/JPL-Caltech 红外线天文台可能有助于回答有关太阳系外行星或系外行星的问题,包括它们是如何形成的以及是什么驱动了它们大气中的天气。 两项新的研究利用了NASA退役的斯皮策太空望远镜的数据,揭示了巨型系外行星和褐矮星,它们既不是恒星,也不是行星。 这两项研究都将成为1月13日美国天文学会主办的虚拟新闻发布会的焦点。 一项调查显示,褐矮星上的天气随年龄的变化而变化。褐矮星形成类似恒星,但没有足够的质量在其核心开始燃烧氢。褐矮星和巨型系外行星在直径、质量和组成方面相似,所以了解其中一颗的大气特性可以帮助我们了解另一颗的大气特性。 第二项研究是关于热木星的研究,热木星是一种气体系外行星,其运行轨道非常靠近它们的母星。这些巨大的行星是如何形成的?是否有不同形成过程的热木星亚型?为了寻找答案,该研究的作者观察了系外行星XO-3b,这是一个罕见的例子,它在靠近其母星时被观察到。 系外行星类似物 年龄往往会给人类带来稳定,对于宇宙物体来说似乎也是如此。 纽约美国自然历史博物馆的天体物理学家约翰娜·沃斯(Johanna Vos)将讨论发表在《天体物理学杂志》上的一项斯皮策调查,该调查发现与年长的褐矮星相比,年轻褐矮星上的天气变化更大。 关于褐矮星,变异性一词指的是来自该天体大气层的不同波长的红外光强度的短期变化。天文学家认为这些变化是由云层引起的,云层反射并吸收大气中的光。 这张插图显示了云在褐矮星大气中的样子。利用NASA退役的斯皮策太空望远镜,科学家们能够探测到褐矮星大气中的云层和其他天气特征。 影像来源:NASA/JPL-Caltech/IPAC/T. Pyle 高变异性可能表明了一个主要的大气特征,可能就像木星的大红斑——一个比地球更大已经旋转了几百年的风暴。它还可以表明大气的快速变化,这可能有多种原因,例如大气中的主要温差或湍流(有时由强风引起)。 将年轻的褐矮星与之前斯皮策对年长褐矮星的观测结果进行比较,作者发现年轻的天体更有可能表现出大气变化。他们还发现,年轻褐矮星的变化更大、更显着。沃斯和她的同事将这种差异归因于这样一个事实:褐矮星在年轻时更蓬松,但随着年龄的增长变得更紧凑,这可能使大气看起来更均匀。 年轻的褐矮星在直径、质量和成分上与主要由气体构成的巨型系外行星相似。但研究巨型系外行星因其母星的近距离存在而变得复杂:它的伴星会照射行星的大气层,从而改变温度,甚至改变化学成分,并影响天气。这颗恒星发出的明亮光线也使看到这颗暗得多的行星变得更加困难。 另一方面,褐矮星可以作为一种对照组,在太空中被孤立地观察。该研究的作者计划将这项新发现纳入褐矮星和巨型系外行星大气如何随年龄演化的模型中。 迁徙的巨人 尽管热木星是研究最多的系外行星类型,但关于它们如何形成的主要问题仍然存在。例如,这些行星是在远离母星的地方形成的——距离足够冷,水分子等可以变成固体——还是更近?第一种情况更符合我们太阳系中行星是如何诞生的理论,但究竟是什么驱使这些类型的行星迁移到离母星如此近的地方,目前尚不清楚。 蒙特利尔麦吉尔大学的系外行星科学家丽莎·邓和她的同事利用斯皮策的数据研究了一颗名为XO-3b的系外行星,它有一个偏心(椭圆)轨道,而不是几乎所有其他已知热木星的圆形轨道。偏心轨道表明XO-3b最近可能已向其母星迁移;如果是这样的话,它最终会进入一个更圆的轨道。 欧洲航天局(ESA)太空观测站盖亚和斯皮策的观测结果都表明,这颗行星自身会产生一些热量,但科学家不知道原因。斯皮策太空望远镜的数据还提供了一张地方网气候模式的地图。过剩的热量可能是通过一种叫做潮汐加热的专业方法,来自地球内部。恒星对行星的引力挤压随着不规则轨道将行星带离恒星越来越近,从而导致行星振荡。由此产生的内部压力变化会产生热量。 对于邓来说,一颗不寻常的热木星提供了一个机会,来测试哪些形成过程可能会产生这些系外行星的某些特征。例如,其他热木星上的潮汐加热是否也是最近迁移的迹象?单靠XO-3b无法解开这个谜题,但它对这些灼热的巨型行星的新想法起到了重要的检验作用。 关于任务的更多信息 斯皮策在其有生之年收集的全部科学数据可通过斯皮策数据档案馆向公众提供,该档案馆位于加利福尼亚州帕萨迪纳加州理工学院IPAC红外科学档案馆。位于南加州的美国宇航局喷气推进实验室为华盛顿的美国宇航局科学任务理事会管理斯皮策太空望远镜任务。 公众可以通过斯皮策太空望远镜数据档案获得在其生命周期内收集的全部科学数据,这些数据档案存放在加州帕萨迪纳市加州理工学院IPAC的红外科学档案馆。位于南加州的NASA喷气推进实验室为位于华盛顿的NASA科学任务理事会管理斯皮策太空望远镜任务。 科学操作在IPAC的斯皮策科学中心进行。航天器运行基地设在科罗拉多州利特尔顿的洛克希德·马丁航天公司。 参考来源: https://www.nasa.gov/feature/jpl/nasa-s-spitzer-illuminates-exoplanets-in-astronomical-society-briefing

随着主镜的展开,詹姆斯·韦伯太空望远镜达到了一个重要的里程碑

随着主镜的展开,詹姆斯·韦伯太空望远镜达到了一个重要的里程碑

这幅艺术家对詹姆斯·韦伯太空望远镜的构想展示了其所有主要元素的充分部署。望远镜被折叠起来放入运载火箭,然后在发射后的两周内慢慢展开。 影像来源:NASA GSFC/CIL/Adriana Manrique Gutierrez NASA的詹姆斯·韦伯太空望远镜团队完全部署了21英尺高的镀金主镜,成功地完成了所有主要望远镜部署的最后阶段,为科学行动做准备。 在与欧洲航天局(ESA)和加拿大航天局的共同努力下,韦伯任务将探索宇宙历史的每个阶段——从我们的太阳系内部到早期宇宙中最遥远的可观测星系。 “今天,NASA实现了几十年来的另一个工程里程碑。虽然旅程还没有结束,但我和韦伯团队一起稍稍松了口气,并想象着未来的突破必将激励世界,”NASA局长比尔·纳尔逊说。“詹姆斯·韦伯太空望远镜是一项史无前例的任务,它即将看到来自第一批星系的光,并发现我们宇宙的奥秘。已经实现的每一项壮举和未来的成就都是对成千上万的创新者的证明,他们为这项任务倾注了毕生的热情。” 在发射前,韦伯的两个主镜翼被折叠起来,以适应阿丽亚娜航天飞机阿丽亚娜5号火箭的前锥。在进行了一周多的望远镜其他关键部署之后,韦伯团队开始远程展开主镜的六边形部分,这是有史以来发射到太空的最大镜面。这是一个多天的过程,第一面于1月7日展开,第二面于1月8日展开。 位于巴尔的摩的太空望远镜科学研究所的任务操作中心地面控制部门于美国东部时间上午8:53开始展开第二块主镜翼。当它在美国东部时间下午1点17分展开并锁定位置后,该团队宣布所有主要的部署都已成功完成。 这个世界上最大和最复杂的空间科学望远镜现在将开始移动其18个主镜段,以对齐望远镜的光学元件。地面团队将指挥镜段背面的126个致动器来弯曲每块镜片–这一调整将需要几个月的时间来完成。然后,在今年夏天发布韦伯的第一批图像之前,该团队将校准科学仪器。 “我为这个跨越大洲和几十年的团队感到骄傲,他们取得了了这一史无前例的成就,”NASA华盛顿总部科学任务理事会副主任托马斯·祖布臣说。“韦伯的成功部署是NASA所能提供的最好的例证:以未知发现的名义,愿意尝试大胆和具有挑战性的事情。” 很快,韦伯还将进行第三次中途修正–这是计划中的三次之一,目的是将望远镜精确地放置在距离地球近100万英里的第二拉格朗日点(通常被称为L2)周围的轨道上。这是韦伯最后的轨道位置,它的遮阳板将保护它不受太阳、地球和月球的光线干扰,这些光线可能会干扰红外光的观测。韦伯望远镜的设计目的是回溯135亿年前,以比以往任何时候都高得多的分辨率捕捉来自天体的红外光,并研究我们自己的太阳系和遥远的世界。 “韦伯太空望远镜所有部署的成功完成具有历史意义,”NASA总部韦伯项目主任格雷戈里·L·罗宾逊说。“这是NASA领导的任务第一次尝试完成复杂的序列以在太空中展开天文台——这对我们的团队、NASA和全世界来说都是一项了不起的壮举。” NASA的科学任务局负责监督这项任务。位于马里兰州格林贝尔特的NASA戈达德太空飞行中心为该机构管理该项目,并监督太空望远镜科学研究所、诺斯罗普·格鲁曼公司和其他任务伙伴。除戈达德外,NASA的几个中心也为该项目做出了贡献,包括休斯顿的约翰逊空间中心、帕萨迪纳的喷气推进实验室、阿拉巴马州亨茨维尔的马歇尔空间飞行中心、硅谷的艾姆斯研究中心等。 有关韦伯任务的更多信息,请访问: https://www.nasa.gov/webb 参考来源: https://www.nasa.gov/press-release/nasa-s-webb-telescope-reaches-major-milestone-as-mirror-unfolds