中子星碰撞

中子星碰撞

Two neutron stars begin to merge in this illustration, blasting a jet of high-speed particles and producing a cloud of debris. These gamma-ray bursts (GRBs) are the most powerful events in the universe. Scientists think these kinds of events are factories for a significant portion of the universe’s heavy elements, including gold. They based their estimates on the rate of short burst GRBs thought to occur across the cosmos, but a Dec. 11, 2021, discovery showed they’ll need to factor long bursts into their calculations as well. For the last few decades, astronomers have generally divided GRBs into two categories. Long bursts emit gamma rays for two seconds or more and originate from the formation of dense objects like black holes in the centers of…

NASA的雨燕、费米任务探测到异常的宇宙爆炸

NASA的雨燕、费米任务探测到异常的宇宙爆炸

10月9日,星期日,一股异常明亮、持续时间长的高能辐射脉冲席卷地球,世界各地的天文学家都为之着迷。这种辐射来自于伽马射线爆发(GRB),这是宇宙中最强大的一类爆炸,是已知最明亮的事件之一。 东部时间周日上午,一波X射线和伽马射线穿过太阳系,触发了NASA费米伽马射线太空望远镜、尼尔·格雷尔斯雨燕天文台、Wind航天器以及其他探测器。世界各地的望远镜转向该地点研究余波,新的观测仍在继续。 雨燕的X射线望远镜在首次探测到GRB 221009A大约一小时后捕捉到了它的余辉。明亮的光环是X射线从位于爆炸方向的银河系内无法观测的尘埃层散射而形成。 影像来源:NASA/Swift/A. Beardmore (University of Leicester) 被称为GRB 221009A的爆炸为第10届费米研讨会提供了一个意想不到的令人兴奋的开端,该研讨会是一次伽马射线天文学家的聚会,目前正在南非的约翰内斯堡举行。“可以肯定地说,这次会议真的是以一声巨响拉开了序幕,每个人都在谈论这个问题。”参加会议的NASA戈达德太空飞行中心费米项目副科学家朱迪·拉库辛说。 根据费米大区域望远镜(LAT)的数据构建的序列,显示了以GRB 221009A位置为中心的伽马射线天空。每一帧显示能量大于1亿电子伏特(MeV)的伽马射线,颜色越亮表示伽马射线信号越强。它们总共代表了超过10个小时的观测。来自我们银河系中平面的辉光呈现为一条宽的对角线带。图像的大约横跨天空20度。 图片来源:NASA/DOE/Fermi LAT Collaboration 该信号来自天箭座方向,经过估计19亿年才到达地球。天文学家认为,这代表了一个新黑洞的诞生,这个黑洞形成于一颗在自身重力下坍缩的大质量恒星的中心。在这种情况下,一个新生的黑洞驱动着接近光速的强大粒子喷流。这些喷流穿过恒星,向太空发射X射线和伽马射线。 雨燕的紫外/光学望远镜在可见光下拍摄的图像显示了GRB 221009A的余辉如何在大约10小时的过程中消退。这次爆炸出现在射手座,发生在19亿年前。图像直径约为4弧分。 影像来源:NASA/Swift/B. Cenko 这次爆发还为国际空间站上的两项实验——NASA的NICER X射线望远镜和日本的全太天X射线图像监测器(MAXI)——之间的联系提供了一个期待已久的首次观测机会。该连接于4月启动,被称为轨道高能监测警报网络(OHMAN)。它使NICER能够迅速转向MAXI探测到的爆发,这些操作以前需要地面科学家的干预。 “OHMAN提供了一个自动警报,使NICER能够在望远镜探测到放射源后三小时内进行跟踪。”戈达德NICER科学负责人扎文·阿佐马尼安表示。“未来的响应时间可能缩短至几分钟。” 这一古老爆炸的光带来了对恒星坍缩、黑洞的诞生、接近光速的物质的行为和相互作用、遥远星系的条件等问题的新见解。另一个如此明亮的GRB可能几十年内都不会出现。 据初步分析,费米大区域望远镜(LAT)探测到这次爆发长达10个多小时。爆发如此明亮和持久的一个原因是,对于GRB来说,它离我们相对较近。 “这次爆发比典型的GRB要近得多,这令人兴奋,因为它让我们能够探测到许多细节,否则这些细节会太微弱而无法探测。”费米LAT合作组织成员罗伯塔·皮莱拉说,他领导了关于爆发的初步交流,也是意大利巴里理工大学的博士生。“但不管距离远近,它也是有史以来见过的最有活力和最明亮的爆发之一,这都让人倍感兴奋。” 参考来源: https://www.nasa.gov/feature/goddard/2022/nasa-s-swift-fermi-missions-detect-exceptional-cosmic-blast

天文望远镜联合对著名黑洞进行前所未有的观测

天文望远镜联合对著名黑洞进行前所未有的观测

Credits: NASA/GSFC/SVS/M.Subbarao & NASA/CXC/SAO/A.Jubett 2019年4月,科学家们使用事件视界望远镜(EHT)发布了第一张M87星系黑洞的图像。然而,这一非凡的成就仅仅是科学故事的开始。 来自19个天文台的数据即将公布,这些数据有望让人们对这个黑洞及其驱动的系统有前所未有的了解,并改善对爱因斯坦广义相对论的检验。 “我们知道,第一张黑洞的直接图像将是突破性的,”日本国家天文台(National Astronomical Observatory of Japan)的哈达和弘(Kazuhiro Hada)说,他是一项新研究的合著者,该研究发表在《天体物理学杂志通讯》(Astrophysical Journal Letters)上,描述了这一庞大的数据集。“但为了从这张非凡的图像中获得最大的效果,我们需要通过对整个电磁波谱的观测,了解黑洞当时的一切行为。” 超大质量黑洞的巨大引力可以为粒子的喷射提供能量,这些粒子以几乎光速的速度穿越遥远的距离。M87的喷射流产生的光横跨整个电磁波谱,从无线电波到可见光再到伽马射线。这一光谱的光的强度为每个黑洞提供了不同的模式。识别这种模式可以对黑洞的属性(例如,它的自旋和能量输出)提供至关重要的洞察力,但这是一个挑战,因为模式会随着时时间而改变。 科学家们用世界上最强大的地面和太空望远镜来协调观测,收集来自整个光谱的光,以弥补这种变化。这是迄今为止对带有喷射流的超大质量黑洞进行的最大的同步观测活动。 参与此次观测活动的NASA望远镜包括钱德拉X射线天文台、哈勃太空望远镜、尼尔·盖尔·斯威夫特天文台、核光谱望远镜阵列(NuSTAR)和费米伽马射线太空望远镜。 从EHT现在标志性的M87图像开始,一段新的视频将带领观众体验每个望远镜的数据之旅。这段视频显示了许多10倍尺度的数据,包括光的波长和物理大小。(数据在2017年4月获得)。然后,它通过来自全球各地的其他射电望远镜阵列的图像,在每一步中向外移动视野。(方块宽度的比例在右下角以光年表示)。接下来,视野将变为探测可见光(哈勃和斯威夫特)、紫外光(斯威夫特)和X射线(钱德拉和NuSTAR)的望远镜。屏幕拆分显示了这些同时覆盖相同面积天空的图像之间的比较情况。画面最后显示了地面上的伽马射线望远镜和太空中的费米从这个黑洞及其喷射流中探测到的情况。 每台望远镜都能提供有关M87中心这个65亿太阳质量黑洞的行为和影响的不同信息,该黑洞距离地球约5500万光年。 “有多个小组正在紧锣密鼓地研究他们的模型是否与这些丰富的观测数据相匹配,我们很高兴看到整个社会都在使用这个公共数据集来帮助我们更好地理解黑洞和它们的喷射流之间的深层联系。”加拿大蒙特利尔麦吉尔大学的合著者达里尔·哈格德(Daryl Haggard)说。 这些数据是由来自32个国家或地区的近200个机构的760名科学家和工程师组成的团队,利用全球各地的机构和机构资助的天文台收集。观测时间集中在2017年3月底至4月中旬。 这些数据是由一个由来自32个国家或地区近200个机构的760名科学家和工程师组成的团队收集的,他们使用的天文台由全球各机构资助。观测集中在2017年3月底至4月中旬。 “这组令人难以置信的观测结果包括许多世界上最好的望远镜,”共同作者马来西亚吉隆坡马来亚大学的胡安·卡洛斯·阿尔加巴(Juan Carlos Algaba)说。“这是全世界天文学家为追求科学而共同努力的一个精彩例子。” 第一个结果显示,M87超大质量黑洞周围物质产生的电磁辐射强度是迄今为止所见过的最低的。这为从接近视界的区域到数万光年之外的区域研究黑洞提供了理想的条件。 这些望远镜的数据和当前(以及未来)的EHT观测数据的结合,将使科学家们能够对一些最重要、最具挑战性的天体物理学研究领域进行重要的研究。例如,科学家计划利用这些数据改善对爱因斯坦广义相对论的检验。目前,这些测试的主要障碍是不确定围绕黑洞旋转的物质是否会被喷射出去,特别是确定发射光的特性。 今天的研究解决的一个相关问题涉及被称为宇宙射线的高能粒子的来源,这些粒子不断地从外太空轰击地球。它们的能量可以比地球上最强大的加速器——大型强子对撞机所能产生的能量高出一百万倍。从黑洞发射的巨大喷射流,就像今天的图像中显示的那样,被认为是最高能量宇宙射线的最可能来源,但关于细节还有很多问题,包括粒子被加速的精确位置。因为宇宙射线通过其碰撞产生光,所以最高能量的伽马射线可以精确地确定这个位置,新的研究表明,这些伽马射线很可能不会在事件视界附近产生——至少不会在2017年产生。解决这一争论的关键是将其与2018年的观测结果以及本周收集的新数据进行比较。 “理解粒子加速度对于我们理解EHT图像和喷射流的所有‘颜色’至关重要,”来自阿姆斯特丹大学的合著者塞拉·马尔柯夫说。“这些喷射流设法将黑洞释放的能量输送到比宿主星系更大的尺度,就像一根巨大的电源线。我们的结果将帮助我们计算所携带的能量,以及黑洞喷射流对环境的影响。 这个新的数据宝库的发布恰逢EHT的2021年观测活动,这是自2018年以来首次利用全球范围内的无线电天线阵列进行观测。去年的活动因为COVID-19大流行而被取消,前一年则因为不可预见的技术问题而暂停。就在本周,EHT天文学家又将目标锁定在我们银河系(被称为人马座A*)的超大质量黑洞M87上,连同几个更遥远的黑洞一起进行了6个夜晚的观测。与2017年相比,该阵列得到了改进,增加了三台射电望远镜:格陵兰望远镜、亚利桑那州的基特峰12米望远镜和法国的北方扩展毫米阵列(NOEMA)。 “随着这些数据的发布,再加上观测的恢复和改进的EHT,我们知道许多令人兴奋的新结果即将出现,”耶鲁大学的合著者米斯拉夫·巴洛科维奇(Mislav Baloković) 说。 描述这些结果的《天体物理杂志通讯》可以在这里获取。 参考来源: https://www.nasa.gov/mission_pages/chandra/news/telescopes-unite-in-unprecedented-observations-of-famous-black-hole.html