Terra航天器观察澳大利亚鲨鱼湾

Terra航天器观察澳大利亚鲨鱼湾

Hamelin Pool Marine Nature Reserve, seen here in an image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on the Terra spacecraft on Dec. 30, 2010, is a special site. Located in the Shark Bay World Heritage Site in Western Australia, it is one of the very few places in the world where we can find living stromatolites—the first living examples of structures built by cyanobacteria. Photosynthetic cyanobacteria are thought to have changed the course of life’s evolution on Earth by playing an important role in the oxygenation of Earth’s atmosphere roughly 2.3 billion years ago. Also, NASA and other federal agencies monitor levels of cyanobacteria, as toxic levels of the blue-green algae can have negative effects on health. ASTER is one of…

2021年度灾难:回顾

2021年度灾难:回顾

In 2021, Hurricane Ida left over 1 million people without power, tornadoes tore across the American Midwest, volcanoes forced people to evacuate their homes, wildfires covered the American West and unusual flooding wreaked havoc on Central Europe. 2021年,飓风艾达导致100多万人断电,龙卷风席卷美国中西部,火山爆发迫使人们撤离家园,野火覆盖美国西部,罕见的洪水对中欧造成严重破坏。 Some characteristics of natural hazards, such as hurricanes, floods and wildfires, have been historically predictable and have informed disaster preparation. However, with human emissions of greenhouse gases increasing Earth’s temperature, we’re seeing changes in those characteristics: wildfire and drought seasons are lengthening, hurricanes and rainfall are becoming more intense, and coastal flooding is increasing. 自然灾害的一些特征,如飓风、洪水和野火,在历史上是可以预测,并为备灾提供了信息。然而,随着人类排放的温室气体使地球温度升高,我们正在看到这些特征的变化:野火和干旱季节正在延长,飓风和降雨变得更加强烈,沿海洪水也正在增加。 By sponsoring application science and fostering domestic and international partnerships, the NASA Disasters program seeks to use its Earth observation data to enable disaster-resilient communities in a changing climate. 通过资助应用科学和培育国内和国际伙伴关系,NASA灾难项目寻求利用其地球观测数据,使社区能够在不断变化的气候中抵御灾害。 For details…

NASA卫星显示云层如何应对北极海冰的变化

NASA卫星显示云层如何应对北极海冰的变化

在预测北极地区未来将继续变暖的程度和速度方面,云层是最大的不确定因素之一。根据一年中的不同时间以及它们形成和存在的不断变化的环境,云既可以起到保温的作用,也可以冷却它们下面的海面。 几十年来,科学家们一直认为,北极海冰覆盖面积的减少使得更多的云在海洋表面附近形成。现在,NASA的一项新研究表明,暴露的海洋通过海冰上一个被称为“冰间湖(polynya)”的大洞释放热量和水分,促进了更多云的形成,这些云捕获了大气中的热量,阻碍了新海冰的再冻结。 这一发现来自于一项对位于格陵兰岛和加拿大之间的巴芬湾北部被称为北方水域冰间湖的研究。该研究是最早利用卫星上的主动传感器探测冰间湖与云之间相互作用的研究之一,科学家们可以利用卫星上的主动传感器分析大气中低层和高层的垂直云层。 领导这项研究的美国宇航局汉普顿兰利研究中心的大气科学家艾米丽·门罗(Emily Monroe)解释说,这种方法使科学家们可以更准确地发现在冰间湖和周围海冰上的海洋表面附近云层的形成过程。 2016年4月19日,在冰桥行动飞行期间看到的北方水域冰间湖和相邻海冰的一部分。从海洋中蒸发的水分可以凝结成小云。 图片来源:NASA/Jeremy Harbeck “我们不再依赖模型输出和气象再分析来验证我们的假设,而是能够从冰间湖附近地区获取近乎瞬时的卫星扫描数据。”门罗说。“由于每次扫描都是在大约10秒的时间范围内收集的,这是更可能冰间湖和附近的海冰更有可能经历相同的大规模天气条件,所以我们可以更准确地分辨出从冰面到水面的变化对上覆云层的影响。” 一个简化的可视化图显示了在被称为冰间湖的海冰包围的大洞打开之前、期间和之后的云层响应。可以看到海冰的隔热效果,因为冰间湖的开口促进了热量(红色)和水分(黄色)的交换。冰洞上的云(紫色)散发的热量有助于保持冰间湖冰冻的开放,并在新的海冰关闭冰洞后仍保持开发。 图片来源:NASA’s Goddard Space Flight Center Conceptual Image Lab/Jenny McElligott 位于马里兰州格林贝尔特的NASA戈达德太空飞行中心的海冰科学家莱内特·博伊斯维特(Linette Boisvert)参与了这项研究,他解释说,海冰的作用就像一锅沸水的盖子。当盖子被打开时,热量和蒸汽逸入到空气中。 “我们从海洋中吸收了更多的热量和水分,进入大气层,因为海冰就像一个盖子或相对温暖的海洋表面和上面寒冷干燥的大气之间的屏障。”博伊斯维特说。“大气变暖和变湿减缓了海冰的垂直增长,这意味着它不会那么厚,所以在夏季更容易融化。” 与北极和南极的其他冰间湖一样,当特定的风向持续方向吹并在冰层上撕破洞时,就会形成北方水域冰间湖。这些风型只存在于冬季,湖口反复打开和关闭,交替暴露和隔离海洋。 这些新见解出现之际,正值北极海冰面积在2021年较暖的几个月逐渐减少后,似乎已达到年度最小范围。它们强调了海冰是如何影响一个在调节全球变暖、海平面上升以及人类造成的气候变化的其他影响方面发挥着不可或缺作用的地区。 海冰不会直接导致全球海平面上升。就像饮料中的冰块一样,融化的海冰并不会直接增加海洋中的水容量。然而,北极海冰范围的缩小可能会使相对温暖的海水暴露在该地区的沿海冰盖和冰川中,导致更多的融化,使淡水流入海洋,并导致海平面上升。 在2019年4月3日的冰桥行动飞行中看到的北方水域冰间湖的西部边缘。冰间湖是一大片暴露在大量海冰覆盖区域内的海洋,在较冷的月份开放四到五次。北方水域冰间湖的范围每年都不同,但可以大到覆盖美国整个州的面积,例如弗吉尼亚州。 图片来源:NASA/Jeremy Harbeck 新的研究显示,在冰间湖上空低层的云比在被海冰覆盖的邻近地区的云排放出更多的能量或热量。这些低层的云也含有更多的液态水——比附近海冰上的云高出近4倍。在研究期间,冰间湖每次重新结冰后,云层下增加的云量和热量在持续了大约一周。 “仅仅因为海冰重新形成和冰间湖关闭,这并不意味着情况会立即恢复正常,”博伊斯维特说。 “即使水分来源基本上消失了,这种额外的云层和增加的云对地表辐射效应的影响在冰间湖冻结后仍会持续一段时间。” 参与这项研究的NASA兰利分部的气候科学家帕特里克·泰勒(Patrick Taylor)说,这些发现还表明,云团对冰间湖的反应延长了冰间湖保持开放的时间。 “它们可以形成更厚的覆盖层,并增加向地表散发的热量。”泰勒说。“释放出的热量有助于使北方水域冰间湖的表面保持温暖,并有助于延长事件本身。” 大规模的气象过程常常使北极变暖的研究变得困难。然而,在同一区域的海冰上重复的开口创造了一个天然实验室来研究云之间的反馈以及海冰和冰间湖之间的交替。 “我们可以比较海冰和开阔水域区域,以及足够接近这两种表面类型的云层,这样我们就不必担心大气条件的巨大变化会混淆以前的研究,”泰勒说。 “如果在几天内海冰消失的冰湖事件没有云层的响应,你就不会期望其他任何地方有响应。冰间湖的开放是一个非常强烈的、明显的强迫因素。” 该团队计划将他们的研究提升到一个新的水平,并测试是否可以在海冰和公海相遇的其他地区观察到类似的云层效应。 参考来源: https://www.nasa.gov/feature/esnt/2021/nasa-satellites-show-how-clouds-respond-to-arctic-sea-ice-change

NASA推动了解生物多样性的创新途径

NASA推动了解生物多样性的创新途径

黄嘴美洲鹃(Yellow-billed Cuckoo)有柔软的棕色翅膀,白色的腹部,长长的尾巴上有黑白相间的斑点,它们几乎已经没有栖息地了。近几十年来,由于城市化、高温热浪等因素的影响,黄嘴美洲鹃在美国东部原生地的种群数量有所下降。气候变化可能会进一步减少其适宜的栖息地。 虽然黄嘴美洲鹃只是广阔的动植物世界中的一个物种,但它的故事并不是独一无二的。为了研究和监测地球生物多样性的变化以及世界上数量巨大的生物体,科学家和公民科学家们记录了他们在野外的观测情况。同时,地面、卫星和机载传感器可以在区域乃至全球范围内进行动植物监测。 美国国家航空航天局(NASA)资助了四个项目,以创建新的虚拟门户网站,使这些丰富的生物多样性信息成为关注焦点,以帮助向全球科学家、土地管理人员和决策者提供有关陆地生态系统状态和健康状况的相关信息。 每个项目均突出了生物多样性的不同方面,并允许用户创建易于使用的地图和其他信息产品,以追踪健康、脆弱的物种在争夺资源、迁徙到更安全的栖息地并适应气候变化时的情况。 NASA兰利研究中心(NASA’s Langley Research Center)负责监督这些工作的项目经理劳拉·罗杰斯(Laura Rogers)表示:“健康的生态系统和丰富的生物多样性是地球生命的基础。这些项目为自然资源保护者和政策制定者提供了保护地球的重要信息。” 植物和动物在哪里? 如果你曾发现一只有虎纹的鲜绿色青蛙,并想知道它究竟是什么,怎么才能找到更多这种青蛙,那你可真幸运。虎腿猴树蛙(Tiger-stripedleaf frogs)是“生命地图”(Map of Life)中包含的许多物种之一,“生命地图”是一个交互式的虚拟数据库,可追踪世界各地的哺乳动物、鸟类、爬行动物、两栖动物和一些鱼类、昆虫和植物。该数据库还可以预测物种未来将生活在何处,并帮助确定它们的栖息地是否将受到法律法规的保护。 树叶上的一只虎腿猴树蛙(Phyllomedusatomopterna) 图片来源:Jacopo Werther,维基媒体(Wikimedia) 耶鲁大学(Yale University)的教授沃尔特·杰茨(Walter Jetz)负责领导“生命地图”的相关工作,他表示:“随着我们周围世界的快速变化,社会、政策制定者、企业和个人均需要就如何与环境打交道做出决策。数据正在迅速增长。” “生命地图”整合了卫星图像、博物馆记录、建模输出以及来自公民科学家的地面和水体观测信息。例如,“生命地图”从NASA与美国地质调查局(U.S.Geological Survey)联合运行的陆地卫星(Landsat)以及Terra卫星和Aqua卫星上的中等分辨率成像光谱仪(ModerateResolution Imaging Spectroradiometer, MODIS)等仪器收集信息。沃尔特·杰茨表示:“这些卫星提供了全球数据,我们可以使用这些数据并将其与物种生存的相关原始数据结合在一起。” “生命地图”旨在帮助政府和非政府机构在保存及保护地球上最脆弱的物种时做出明智的决定。大自然保护协会(The Nature Conservancy, TNC)的空间规划技术协调员詹妮弗·麦克高恩(JenniferMcGowan)负责帮助该组织确定保护行动的优先顺序。詹妮弗·麦克高恩表示:“‘生命地图’项目提供了物种层面的信息,这对于确定为保护特定物种而应采取的保护行动的优先级非常有用。” 詹妮弗·麦克高恩表示:“‘生命地图’的物种分布图尤其宝贵。”这有助于他们以经济有效的方式来平衡陆地栖息地和海洋栖息地的保护机会。 该团队还创建了一款“生命地图”移动应用程序,使用户可以探索周围的环境并记录自己的所见所闻。该应用程序包含有关全球3万多个物种的信息。例如,如果德克萨斯州休斯顿的某人想发现当地的蜻蜓,他们将打开该应用程序,搜索自己所在的位置,看到粉舞蟌(ArgiaMoesta)的照片和说明。粉舞蟌是大理石大小的昆虫,翅膀纤长、半透明。 沃尔特·杰茨表示,这款应用程序和在线门户网站均揭示了土地利用的变化(例如种植粮食、砍伐树木和建造城市)是塑造生物多样性的主要驱动力。如果环境发生变化,比如在湿地上新建一座建筑,则很可能会对生物多样性造成影响,例如特定地区的蜻蜓数量会减少。 气候变化如何影响物种群落? 杜克大学(Duke University)的研究人员也在研发一种工具,旨在帮助识别北美的生物多样性变化。值得一提的是,由杜克大学的詹妮弗·斯文森(Jennifer Swenson)教授和吉姆·克拉克(JimClark)教授领导的研究小组想知道当一个物种在变暖的世界中迁徙并为合适的栖息地展开竞争时将如何影响另一个物种。该研究小组创建了一个交互式门户网站,将卫星、机载和地面信息以及气候预测和生态预报结合起来,以追踪气候变化将如何影响物种和野生动植物群落。 例如,“基于通用联合归因模型的生物多样性预测”(Predicting Biodiversity with a Generalized JointAttribution Model,简称PBGJAM)使用了美国国家生态观测站网络(National Ecological Observatory Network, 简称NEON)收集的信息、NASA遥感观测的地球数据和气候数据以及其他资源,以揭示啄木鸟、荒漠小囊鼠和白枞树等许多物种在未来的气候情景下将有可能迁移到什么地方。 枝条上的一只黄嘴美洲鹃(Coccyzusamericanus)。 图片来源:MagnusManske,维基媒体 詹妮弗·斯文森表示:“我们需要考虑哪个物种和哪个物种栖息在一起,以便了解更广泛的影响。” 例如,如果desert pocket mouse没能在干旱中幸存下来,它们的捕食者会不会找到其他食物来源,或者是改变栖息地,或是也将灭绝? PBGJAM门户旨在探索生物多样性群落如何作为一个整体来应对气候变化,以更准确地预测气候变化对单个物种和整个生态系统的影响。 为了解决这个问题,PBGJAM团队建立了强大的通用联合归因模型(Generalized Joint Attribution Model),该模型可以为多个物种引入不同类型的数据。例如,荒漠小囊鼠(desert pocket mouse)和其他鼠种目前集中在美国西南地区。随着气候变化和发展,它们开始失去能存活的栖息地从而被迫向北或向东迁移,同时相互争夺资源,并从捕食者手中争先恐后地捕杀。 该模型可以推算出特定区域中生活着多少物种,以及对特定物种存在多少合适的栖息地。该模型还可以预测未来这一切将如何改变,以及随着群落迁移,一个物种的迁徙将如何影响另一个物种。 PBGJAM提供的网络界面降低了决策者、科学家和任何感兴趣的个人的参与门槛。来自纽约州立大学布法罗分校(Universityat Buffalo)的教授亚当·威尔逊(Adam Wilson)表示,他们只需要选择一种生态系统类型,然后查看其变化方式即可。 何时开花? PBGJAM采用多种途径来研究气候变化对物种群落的影响,但高级物候信息系统(Advanced Phenological Information System, APIS)则重点关注植物物种的季节性动态。具体而言,APIS为探索气候变化和其他因素如何影响物候或研究季节性的生命周期事件(例如抽叶、开花、繁殖和迁徙)提供了框架。 APIS包括一系列软件,这些软件依赖于来自野外观测、近地面观测相机和卫星的上百万数据来探索汇总不同时间和空间尺度的物候观测。这项工作由来自美国国家入侵物种委员会(National Invasive Species Council)首席科学家杰夫·莫里塞特(JeffMorisette)和陆地过程分布式数据档案中心(Land Processes Distributed ActiveArchive Center)的项目科学家汤姆·迈尔斯佩格(Tom Maiersperger)共同领导。陆地过程分布式数据档案中心是NASA地球观测系统数据和信息系统(EOSDIS)的一部分。 物候学与周期性的动植物生命周期事件的时间有关,例如亚利桑那州切利峡谷国家纪念碑(Canyon de Chelly National Monument)的树叶在秋天变色。 图片来源:美国国家公园管理局(NationalPark Service) APIS包括来自MODIS、PhenoCam(由北亚利桑那大学的研究人员领导,在固定位置设置的高分辨率数码相机,用于捕捉延时图像),美国国家物候网(USA-NPN)和NEON的信息。该项目的参与者还包括保护科学合作伙伴(Conservation Science Partners),该机构领导的软件研发促进了近期物候预测。 杰夫·莫里塞特说:“当看到一棵丁香树开花时,你可以说是这颗丁香树的春天来临了。” 但是,正如卫星观测所发现的那样,这对于季节的开始意味着什么呢? 杰夫·莫里塞特表示:“APIS可在更广阔的区域、跨越多个监控网络的范围,在不同的尺度上提供更加全面的信息。在动植物入侵的背景下,了解物种之间如何竞争以及更广泛的生态系统动态和气候是如何影响这些物种的,这一点至关重要。如果仅在有限的时空尺度上观察,你将很可能会错过一些东西。” 来自USA-NPN的科学家凯西·格斯特(Kathy Gerst)与杰夫·莫里塞特等人共同创建了APIS。她说:“APIS旨在研发技术,使数据更易于获取,且更容易与其他观测源的数据集成。APIS使人们能够将数据无缝整合在一起。” 凯西·格斯特表示,生态学家、自然资源管理者和气候学家可以使用APIS来查看物候与气候之间的关系,以了解受威胁物种、濒危物种及入侵物种对温度和降雨变化的反应。 APIS还可以帮助研究人员创建地图,以确定特定年份的春天是否较常年提前以及通过研究长期模式以查看趋势将如何随时间变化。例如,凯西·格斯特等人发表了一篇论文,将19种树木和灌木的春季指数或指示春季开始的模型与实际的物候活动(如开花)联系起来。 使用APIS的其他组织包括美国地质调查局西南气候适应科学中心和中北气候适应科学中心(Southwest and North Central Climate Adaptation ScienceCenters),这两个中心都在研究物候与干旱的关系。美国国家公园管理局研究和监测处(Inventory and Monitoring Division)使用APIS来更好地了解植被和土壤。美国丹佛动物园(DenverZoo)和蒙古国艾赫纳特自然保护区(Ikh Nart Nature Reserve)也正在使用APIS来为其天然草地管理策略提供参考。 植物的颜色告诉我们什么? 为了帮助向APIS、PBGJAM和“生命地图”提供强大的植物数据,由来自威斯康星大学麦迪逊分校(University of Wisconsin-Madison)的菲尔·汤森(Phil Townsend)教授领导的团队创建了生态光谱信息系统(Ecological Spectral Information System, EcoSIS)。 由于光谱及其反射阳光的方式,新鲜的树叶和郁郁葱葱的树梢在我们眼中看起来是鲜艳的绿色。由于它们吸收除绿色以外的所有波长,因此我们看到的是绿色。当树叶开始变为黄色和红色时,即反射相应颜色的波长。 这些明显的迹象或光谱变化有助于研究人员了解植被的健康状况。尽管来自机载、卫星和地面传感器的光谱数据比以往任何时候都要多,但这些数据并不总是易于使用。 EcoSIS数据库是添加、查找和使用光谱数据的一站式门户。与菲尔·汤森在NASA喷气推进实验室合作的工程师娜塔莎·斯塔夫罗斯(Natasha Stavros)说:“光谱信息是生物多样性的指标。”光谱数据有助于我们了解遗传多样性。 现在,EcoSIS已启动并开始运行,该团队正在研发云端地理空间光谱处理环境(Geospatial Spectroscopy…

墨西哥Cuatro Cienegas盆地

墨西哥Cuatro Cienegas盆地

In the northern Mexican state of Cohuilla lies the Cuatro Cienegas Basin. Dotting the landscape are small pools, formed by natural springs, in which are found live stromatolites. These stony layered structures are formed by colonies of cyanobacteria that trap sedimentary grains. Their major presence in the fossil record of several billion years ago is evidence of some of the earliest life on Earth. The biological reserve of Cuatro Ciénegas could have strong links to discovering life on Mars, since the adaptability of bioforms in the region is unique in the world. The image was acquired April 1, 2017, covers an area of 14.9 by 23.8 km, and is located at 26.9 degrees north, 102.1 degrees west by the ASTER instrument aboard the Terra satellite….