令人难忘的画像:NASA的韦伯揭示了创生之柱中的尘埃和结构

令人难忘的画像:NASA的韦伯揭示了创生之柱中的尘埃和结构

NASA的詹姆斯·韦伯太空望远镜拍摄到的创生之柱的中红外照片令人不寒而栗。存在于这一区域的数千颗恒星似乎消失了,因为恒星通常不会发出太多中红外光,而看似无穷无尽的气体和尘埃层成为了中心。韦布中红外仪器(MIRI)对尘埃的探测非常重要,因为尘埃是恒星形成的主要成分。 影像来源:NASA, ESA, CSA, STScI; Joseph DePasquale (STScI), Alyssa Pagan (STScI) 这不是被时间遗忘的坟墓的空灵风景。这些沾满烟尘的手指也不会伸出来。这些充满气体和尘埃的星柱,遮蔽了几千年来慢慢形成的恒星。NASA的詹姆斯·韦伯太空望远镜在中红外光下拍下了这张奇异的、布满尘埃的创生之柱的照片,为我们展示了一个熟悉景观的新视角。 为什么在韦伯的中红外仪器(MIRI)图像中,中红外光会让人产生如此阴郁、令人心寒的情绪?星际尘埃遮蔽了这一场景。虽然中红外光专门用来显示尘埃的位置,但恒星在这些波长下不够明亮,无法显现。相反,这些若隐若现的铅色气体和尘埃柱在边缘闪烁,暗示着内部的活动。 成千上万的恒星在这个地区形成。当研究韦伯最近的近红外相机(NIRCam)图像时,这一点十分明显。在MIRI的视图中,大多数恒星似乎都不见了。为什么呢?因为许多新形成的恒星周围不再有足够的尘埃,无法在中红外光中探测到。相反,MIRI观测的是那些还没有脱去尘埃 “外衣 “的年轻恒星。这些是位于星柱边缘的深红色球体。相比之下,点缀在场景中的蓝色恒星正在老化,这意味着它们已经褪去了大部分的气体和尘埃层。 中红外光擅长观测气体和尘埃的极端细节。这一点在整个背景中也是不容置疑的。尘埃最密集的区域是最深的灰色。顶部的红色区域形成了一个神秘的V形,就像一只展翅的猫头鹰,是尘埃扩散和冷却的地方。请注意,没有背景星系出现——星系盘最密集部分的星际介质因气体和尘埃而过于膨胀,使它们的遥远光线无法穿透。 这个景观有多大?沿着最上面的星柱走,停在那颗像扫帚一样从其下缘伸出来的明亮的红色恒星上。这颗恒星和它的覆盖层比我们整个太阳系还要大。 1995年,NASA的哈勃太空望远镜首次拍摄到这一场景,并于2014年再次进行观测,但许多其他天文台,如NASA的斯皮策太空望远镜,也曾深入观察过创生之柱。通过每一次观测,天文学家都获得了新的信息,并通过他们正在进行的研究对这个恒星形成区域有了更深入的了解。每一种波长的光和先进的仪器都提供了更加精确的气体、尘埃和恒星的数量,这为研究人员的恒星形成模型提供了依据。由于新的MIRI图像,天文学家现在拥有比以往任何时候都更高分辨率的中红外光数据,并将分析其更精确的尘埃测量结果,以创建这个遥远地区更完整的三维景观。 创生之柱位于巨大的鹰状星云中,距离地球6,500光年。 詹姆斯·韦伯太空望远镜是世界上首屈一指的太空科学天文台。韦伯将解开我们太阳系中的谜团,展望其他恒星周围的遥远世界,探索我们宇宙的神秘结构和起源以及我们在其中的位置。韦伯是由NASA及其合作伙伴 ESA和CSA领导的一项国际计划。 参考来源: https://www.nasa.gov/feature/goddard/2022/haunting-portrait-nasa-s-webb-reveals-dust-structure-in-pillars-of-creation

韦伯揭示了创生之柱的新细节

韦伯揭示了创生之柱的新细节

Our James Webb Space Telescope has captured a new image of the famous Pillars of Creation—first imaged by the Hubble Space Telescope in 1995—that reveals new details about the region. The three-dimensional pillars look like majestic rock formations but are far more permeable. These columns are made up of cool interstellar gas and dust that sometimes appear semi-transparent in near-infrared light. Webb’s new view of the Pillars of Creation will help researchers revamp their models of star formation by identifying far more precise counts of newly formed stars, along with the quantities of gas and dust in the region. Over time, they will begin to build a clearer understanding of how stars form and burst out of these dusty clouds over millions of years. Download…

詹姆斯·韦伯太空望远镜提供了前所未有的早期宇宙的细节

詹姆斯·韦伯太空望远镜提供了前所未有的早期宇宙的细节

编者按:本文重点介绍了韦伯科学进展中的数据,这些数据尚未通过同行评审。 NASA的詹姆斯·韦伯太空望远镜是专门用来探测来自遥远星系的微弱红外光,并让天文学家瞥见早期宇宙的情况。在我们宇宙的这个早期阶段,星系的性质既不为人所知,也不为人理解。但是在前景星系团的引力透镜的帮助下,暗淡的背景星系可以被放大,并在图像的不同部分多次出现。 星系团MACS0647的巨大引力就像一个宇宙透镜,用来弯曲和放大来自更远的MACS0647-JD星系的光线。它还将JD系统放大了三倍,使其图像出现在三个不同的位置。这些用白框突出显示的图像标记为JD1、JD2和JD3;放大的视图显示在右侧的面板中。在这张来自韦伯近红外相机(NIRCam)仪器的图像中,蓝色被指定为1.15和1.5微米(F115W,F150W)的波长,绿色被指定为2.0和2.77微米(F200W,F277W)的波长,红色被指定为3.65和4.44微米(F365W,F444W)的波长。从太空望远镜科学研究所下载全分辨率版本。 影像来源:科学数据: NASA, ESA, CSA, STScI, and Tiger Hsiao (Johns Hopkins University) 影像处理: Alyssa Pagan (STScI) 今天,我们和三位研究韦伯望远镜的天文学家坐下来谈谈他们的最新发现。团队成员是欧洲航天局和约翰霍普金斯大学AURA/STScI的丹·科;约翰霍普金斯大学的萧虎(Tiger Hsiao);以及德克萨斯大学奥斯汀分校的丽贝卡·拉尔森。这些科学家一直在用韦伯望远镜观测遥远的星系MACS0647-JD,他们发现了一些有趣的事情。 丹·科:10年前,我用哈勃太空望远镜发现了这个星系MACS0647-JD。当时,我从未研究过高红移星系,然后我发现了这一个可能在红移11时最遥远的星系,大约能回溯到97%大爆炸事件时的时间。对于哈勃望远镜,它只是一个苍白的红点。我们可以看出它真的很小,只是宇宙最初4亿年中的一个小星系。现在我们使用韦伯,我们能够解析两个对象!我们正在积极讨论这是两个星系还是一个星系中的两个恒星团。我们不知道,但这些是韦伯设计用来帮助我们回答的问题。 萧·宇扬·虎(Tiger Yu-Yang Hsiao):你也可以看到,这两个物体之间的颜色是如此不同。一个更蓝,另一个更红。蓝色气体和红色气体有不同的特征。蓝色的天体实际上有非常年轻的恒星形成,几乎没有尘埃,但是红色的小天体里面有更多的尘埃,而且更古老。而且它们的恒星质量也可能不同。 我们在这么小的系统中看到两种结构,这真的很有趣。我们可能正在见证非常早期的宇宙中的星系合并。如果这是最遥远的合并,我真的会欣喜若狂!。 科耶:由于大质量星系团MACS0647的引力透镜作用,它被分成三个图像:JD1、JD2和JD3。它们分别被放大了八倍、五倍和两倍。 丽贝卡·拉森:到目前为止,我们还没有真正能够详细研究早期宇宙中的星系。在韦伯之前,我们只观测到几十个这样的星系。研究它们可以帮助我们了解它们是如何进化成像我们今天居住的星系一样。还有,宇宙是如何随着时间演变。 我想我最喜欢的部分是,对于我们得到的这么多新的韦伯图像,如果你在背景中看,有所有这些小点,这些都是星系!他们每个人。我们所获得的信息数量之多令人惊讶,而这些信息是我们以前无法看到的。这不是一个深场照片。这不是长曝光照片。我们甚至已经很久没有真正尝试过用这个望远镜来观察一个地方了。这只是开始! 这是哈勃太空望远镜2012年拍摄的MACS0647-JD图像(Hubblesite.org上的过滤器信息)与詹姆斯·韦伯太空望远镜2022年拍摄的图像(使用与上图相同的颜色分配)的对比。请注意,MACS0647-JD在哈勃图像中看起来像一个微弱的红点,但韦伯揭示了更多的细节。从太空望远镜科学研究所下载全分辨率版本。 影像来源:科学数据: NASA, ESA, CSA, STScI, and Tiger Hsiao (Johns Hopkins University) 影像处理: Alyssa Pagan (STScI) 参考来源: https://blogs.nasa.gov/webb/2022/10/26/webb-offers-never-before-seen-details-of-early-universe/

詹姆斯·韦伯太空望远镜发现了早期宇宙中的致密宇宙结

詹姆斯·韦伯太空望远镜发现了早期宇宙中的致密宇宙结

通过NASA的詹姆斯·韦伯太空望远镜,观察早期宇宙的天文学家们有了一个惊人的发现:在一个极红的类星体周围,一个大质量星系团正在形成。这一结果将扩展我们对早期宇宙星系团如何聚集在一起并形成我们今天看到的宇宙网的理解。 类星体是一种特殊类型的活动星系核(AGN),是在星系中心有超大质量黑洞的致密区域。落入超大质量黑洞的气体使类星体的亮度超过了星系中所有的恒星。 韦伯观测的类星体名为SDSS J165202.64+172852.3,存在于115亿年前。它异常的红色不仅是因为它本身的红色,还因为星系的光因其巨大的距离而发生了红移。韦伯在红外波长上具有无与伦比的灵敏度,非常适合详细地研究星系。 左边是哈勃太空望远镜在可见光和近红外光下拍摄的类星体SDSS J165202.64+172852.3。右边和下面的图像展示了詹姆斯·韦伯太空望远镜在多个波长下的新观测结果。他们展示了在中心类星体周围新观测到的星系团内气体的分布和运动。 影像来源:NASA, ESA, CSA, STScI, D. Wylezalek (Heidelberg Univ.), A. Vayner and N. Zakamska (Johns Hopkins Univ.) and the Q-3D Team 这颗类星体是在如此遥远的地方观测到的最强大的星系核之一。天文学家推测,这颗类星体的极端辐射可能会导致“星系风”,将自由气体从其宿主星系中推出,并可能极大地影响那里未来的恒星形成。 为了研究星系中气体、尘埃和恒星物质的运动,研究团队使用了望远镜的近红外光谱仪(NIRSpec)。这个强大的仪器使用一种叫做光谱学的技术来观察类星体周围各种外流和风的运动。NIRSpec可以同时收集望远镜整个视场的光谱,而不是一次只从一个点收集光谱,从而使韦伯能够同时检查类星体、其星系和更广阔的环境。 NASA的哈勃太空望远镜和其他天文台先前的研究引起了人们对类星体强大外流的关注,天文学家推测,它的宿主星系可能正在与某个看不见的伴星合并。但研究团队并没有期望韦伯的NIRSpec数据清楚地表明,它不仅是一个星系,而且至少还有三个星系围绕着它旋转。多亏了广阔区域的光谱,所有这些周围物质的运动都可以被绘制出来,从而得出这样的结论:红色类星体实际上是星系形成的密集结的一部分。 “在这个早期阶段,几乎没有已知的星系原星系团。我们很难找到它们,而且很少有自大爆炸以来有时间形成。”德国海德堡大学的天文学家多米尼卡·怀勒扎勒克说,他和韦伯一起领导了这项研究。“这最终可能有助于我们了解密集环境中的星系如何演变。 这是一个令人兴奋的结果。” 利用NIRSpec的观测结果,研究团队确认了这类星体的三个星系伴星,并显示了它们之间的联系。哈勃望远镜的档案数据暗示,可能还有更多。哈勃第三代广域照相机拍摄的图像显示,类星体及其星系周围有大量的物质,促使研究团队选择进行这项研究,以了解其流出物及其对宿主星系的影响。研究团队怀疑他们可能一直在观察整个星系团的核心——直到现在韦伯的清晰成像才揭示了这一点。 “我们对数据的第一次观察很快揭示了邻近星系之间主要相互作用的明确迹象。”马里兰州巴尔的摩约翰·霍普金斯大学的研究小组成员安德烈·韦纳说。“NIRSpec仪器的灵敏度很快就显现出来,我很清楚,我们正处于红外光谱的新时代。” 这三个被证实的星系以难以置信的高速度围绕彼此旋转,这表明存在大量的质量。结合它们与类星体周围区域的紧密程度,研究团队认为这标志着早期宇宙中已知的星系形成最密集的区域之一。“即使是一个致密的暗物质结也不足以解释它。”怀勒扎勒克说。“我们认为我们可能看到一个区域,两个巨大的暗物质光环正在合并在一起。”暗物质是宇宙中一个不可见的组成部分,它将星系和星系团连接在一起,并被认为形成了一个“光环”,延伸到这些结构中的恒星之外。 怀勒扎勒克团队进行的这项研究是韦伯对早期宇宙研究的一部分。凭借其史无前例的回溯能力,望远镜已经被用于研究第一批星系是如何形成和演化,以及黑洞是如何形成并影响宇宙结构。该团队正在计划对这个意想不到的星系原星系团进行后续观测,并希望利用它来了解像这样的密集、混乱的星系团是如何形成,以及它是如何受到其中心活跃的超大质量黑洞的影响。 这些结果将发表在《天体物理学杂志通讯》上。这项研究是作为韦伯的早期发布科学项目#1335的一部分完成。 詹姆斯·韦伯太空望远镜是世界上首屈一指的太空科学天文台。韦伯将解开我们太阳系中的谜团,展望其他恒星周围的遥远世界,探索我们宇宙的神秘结构和起源以及我们在其中的位置。韦伯是由NASA及其合作伙伴 ESA和CSA领导的一项国际计划。 参考来源: https://www.nasa.gov/feature/goddard/2022/nasa-s-webb-uncovers-dense-cosmic-knot-in-the-early-universe

詹姆斯·韦伯太空望远镜拍摄了充满恒星的创生之柱

詹姆斯·韦伯太空望远镜拍摄了充满恒星的创生之柱

在NASA詹姆斯·韦伯太空望远镜的近红外视图中,创生之柱呈现出万花筒般的色彩。这些柱子看起来像是从沙漠景观中升起的拱门和尖塔,但却充满了半透明的气体和尘埃,而且不断变化。这是一个年轻恒星正在形成的区域,或者说,在它们继续形成的过程中刚刚从它们的尘埃茧中破茧而出。 影像来源:NASA, ESA, CSA, STScI; Joseph DePasquale (STScI), Anton M. Koekemoer (STScI), Alyssa Pagan (STScI). NASA的詹姆斯·韦伯太空望远镜拍摄到了一幅郁郁葱葱、非常详细的景观——标志性的创生之柱,在那里,新的恒星正在稠密的气体云和尘埃云中形成。这些三维柱子看起来像雄伟的岩层,但渗透性更强。这些柱状物由冷的星际气体和尘埃组成,它们有时在近红外光下呈半透明。 1995年,NASA哈勃太空望远镜首次拍摄到创生之柱(Pillars of Creation)的图像,使之声名鹊起。韦伯对创生之柱的新观点将帮助研究人员通过更精确地确定新形成恒星的数量,以及该地区气体和尘埃的数量,来改进恒星形成模型。随着时间的推移,他们将开始更清楚地了解数百万年来恒星是如何从这些尘土飞扬的云层中形成和爆发。 1995年,NASA哈勃太空望远镜首次拍摄到创生之柱(Pillars of Creation)的图像,使之声名鹊起。2014年,哈勃望远镜重新拍摄了这一场景,在可见光下展现了更清晰、更广阔的视野,如上图左图所示。NASA詹姆斯·韦伯太空望远镜拍摄的一幅新的近红外光图(见右图),帮助我们看到了这个恒星形成区域更多的尘埃。厚厚的、灰蒙蒙的棕色恒星柱不再那么不透明,更多仍在形成的红色恒星出现在我们的视野中。 影像来源:NASA, ESA, CSA, STScI; Joseph DePasquale (STScI), Anton M. Koekemoer (STScI), Alyssa Pagan (STScI). 在这张韦伯近红外相机(NIRCam)拍摄的照片中,新形成的恒星最为抢眼。这些明亮的红色球体通常具有衍射尖峰,位于尘埃柱的外面。当气体和尘埃柱内形成具有足够质量的结节时,它们在自身重力作用下开始坍缩,缓慢升温,最终形成新恒星。 那些在尘埃柱边缘看起来像熔岩的波浪线呢?这些是恒星的抛射物,它们仍在气体和尘埃中形成。年轻的恒星会周期性地喷射出超音速喷流,这些喷流会与物质云发生碰撞,比如这些厚厚的尘埃柱。这有时也会导致弓形冲击,这种冲击可以形成波浪状的图案,就像船在水中移动一样。深红色的光芒来自喷流和冲击产生的高能氢分子。这在从顶部看的第二和第三根尘埃柱上很明显——NIRCam图像实际上随着它们的活动而跳动。据估计,这些年轻的恒星只有几十万年的历史。 尽管近红外光似乎使韦伯能够“穿透”云层,揭示了尘埃柱之外的巨大宇宙距离,但在这个视图中没有星系。相反,一种半透明气体和尘埃的混合物,即我们银盘最致密部分的星际介质,阻挡了我们对更深宇宙的观察。 这一场景于1995年由哈勃首次拍摄,并于2014年重新拍摄这一场景,但许多其他天文台也曾深入观察过这一区域。每台先进的仪器都为研究人员提供了关于这个几乎布满恒星的区域的新细节。 这张裁剪紧凑的图像位于6500光年外的巨大的鹰状星云内。 观看一段视频,看看韦伯用近红外光拍摄的创生之柱。 影像来源:NASA, ESA, CSA, STScI; Joseph DePasquale (STScI), Anton M. Koekemoer (STScI), Alyssa Pagan (STScI); Danielle Kirshenblat (STScI). 从太空望远镜科学研究所下载全分辨率、未压缩版本和支持的韦伯近红外图像的视觉效果、哈勃和韦伯图像的对比,以及观看韦伯拍摄的图像视频。 詹姆斯·韦伯太空望远镜是世界上首屈一指的太空科学天文台。韦伯将解开我们太阳系中的谜团,展望其他恒星周围的遥远世界,探索我们宇宙的神秘结构和起源以及我们在其中的位置。韦伯是由NASA及其合作伙伴 ESA和CSA领导的一项国际计划。 参考来源: https://www.nasa.gov/feature/goddard/2022/nasa-s-webb-takes-star-filled-portrait-of-pillars-of-creation

NASA的望远镜拍摄了整个天空12年的延时电影

NASA的望远镜拍摄了整个天空12年的延时电影

这幅拼接图由覆盖整个天空的图像组成,这些图像由宽视场红外测量探测器(WISE)拍摄,是WISE 2012年全天空数据发布的一部分。通过观测整个天空,WISE可以搜索微弱的物体,如遥远的星系,或调查宇宙天体群。 影像来源:NASA/JPL Caltech/UCLA 天空的图片可以向我们展示宇宙奇观;电影可以把他们带到生活中。NASA的NEOWISE太空望远镜拍摄的影片揭示了天空中的运动和变化。 每隔六个月,NASA的近地天体广域红外巡天探测器(NEOWISE)航天器就完成一次绕太阳半周的飞行,拍摄各个方向的图像。这些图像拼接在一起,形成了一张“全天空”地图,显示了数亿物体的位置和亮度。利用航天器绘制的18张全天图(其中第19张和第20张将于2023年3月发布),科学家们创造了一幅天空的延时电影,揭示了天空跨越十年的变化。 每一张地图对天文学家来说都是一个巨大的资源,但如果按时间顺序来看,它们会成为更好地理解宇宙的更强大的资源。通过比较这些地图,可以发现随着时间推移位置或亮度发生变化的遥远天体,这就是所谓的时域天文学。 NASA NEOWISE任务的新延时电影让天文学家有机会看到恒星和黑洞等物体随着时间的推移而移动和变化。这些视频包括先前隐藏的褐矮星、一个正在进食的黑洞、一颗濒临死亡的恒星、一个恒星形成区域和一颗正在变亮的恒星。它们结合了NEOWISE超过10年的观测和18幅全天空图像,使长期分析和对宇宙的更深理解成为可能。 “如果你走出去看夜空,它可能看起来什么都没有改变,但事实并非如此。”图森市亚利桑那大学NEOWISE的首席研究员艾米·梅因泽说。“恒星在燃烧和爆炸,小行星在呼啸而过,黑洞正在撕裂恒星。宇宙是一个非常忙碌、活跃的地方。” NEOWISE最初是一个数据处理项目,用于从WISE中检索小行星的检测和特征。WISE是一个于2009年启动的天文台,其任务是扫描整个天空,以发现和研究太阳系以外的天体。航天器使用低温冷却探测器,使其对红外光敏感。 人眼看不见红外光,红外光是由大量宇宙天体辐射出来,这些宇宙物体包括寒冷的邻近恒星和宇宙中一些最明亮的星系。在一些红外观测所需的机载冷却剂用完后,WISE任务于2011年结束,但航天器及其一些红外探测器仍能正常工作。因此,2013年,NASA将其重新用于跟踪小行星和其他近地天体(NEO)。任务和航天器都有了一个新名字:NEOWISE。 这幅插图显示了地球轨道上的宽视场红外测量探测器(WISE)航天器。WISE任务于2011年结束,但在2013年,该航天器被用于寻找和研究小行星和其他近地天体(NEO)。该任务和航天器被重新命名为NEOWISE。 影像来源:NASA/JPL-Caltech 变得更聪明 尽管发生了变化,红外望远镜仍继续每六个月扫描一次天空,天文学家继续使用这些数据研究太阳系以外的物体。 例如,2020年,科学家发布了名为CatWISE的项目的第二次迭代:12张NEOWISE全天图的天体目录。研究人员利用该目录研究了褐矮星,这是一组遍布银河系、潜伏在太阳附近黑暗中的天体。尽管它们的形状像恒星,但褐矮星并没有积累足够的质量来启动聚变,而聚变是恒星发光的过程。 例如,在2020年,科学家们发布了一个名为CatWISE的项目的第二次迭代:来自12个NEOWISE全天地图的物体目录。研究人员使用该目录来研究褐矮星,褐矮星是一群遍布银河系并潜伏在靠近恒星的黑暗中的物体。尽管它们像恒星一样形成,但褐矮星没有积累足够的质量来启动导致恒星发光过程的聚变。 由于靠近地球,与以相同速度移动的较远恒星相比,附近的褐矮星在天空中的移动速度似乎更快。因此,在目录中数十亿个物体中识别褐矮星的一种方法是寻找移动的物体。CatWISE的一个补充项目,名为“后院世界:行星9”,邀请公民科学家筛选NEOWISE数据,寻找计算机搜索可能遗漏的移动物体。 通过最初的两张WISE全天候地图,科学家们在距离太阳65光年的范围内发现了大约200颗褐矮星。额外的地图显示还有60颗Y矮星,是已知的最冷的褐矮星数量的两倍。与较暖的褐矮星相比,Y矮星可能有一个奇怪的故事来讲述它们是如何形成的以及何时形成。这些发现有助于阐明我们太阳附近的众多天体。对靠近太阳的棕矮星进行更全面的统计,可以告诉科学家银河系中恒星形成的效率有多高,以及形成的时间有多早。 十多年来对天空变化的观测也有助于研究恒星是如何形成的。NEOWISE可以观测包裹着原恒星的布满灰尘的毯子,或正在成为恒星的炽热气体球。在多年的过程中,原恒星会闪烁和发光,因为它们从周围的尘埃云中积累了更多的质量。科学家们正在用NEOWISE对近1000颗原恒星进行长期监测,以深入了解恒星形成的早期阶段。 十多年来观察天空的变化也有助于研究恒星的形成方式。NEOWISE可以窥视可以窥视包裹着原恒星的尘埃层,或是正在形成恒星的炽热气体球。多年来,当原恒星从周围的尘埃云中积累更多质量时,原恒星会闪烁和发光,科学家们正在用NEOWISE对近1,000颗原恒星进行长期监测,以深入了解恒星形成的早期阶段。 NEOWISE的数据也提高了我们对黑洞的理解。最初的WISE调查在遥远星系的中心发现了数百万个超大质量黑洞。在最近的一项研究中,科学家使用NEOWISE数据和一种称为回波映射的技术来测量遥远黑洞周围炽热发光气体盘的大小,这些黑洞太小太远,任何望远镜都无法分辨。 NASA喷气推进实验室的天文学家、WISE项目科学家彼得·艾森哈特表示:“我们从未预料到航天器会运行这么长时间,我认为我们无法预料我们能够用这么多数据进行科学研究。” 关于任务的更多信息 NASA位于加利福尼亚州帕萨迪纳的喷气推进实验室为华盛顿科学任务理事会下属的NASA行星防御协调办公室管理和运作NEOWISE任务。首席研究员艾米·梅因泽在亚利桑那大学工作。犹他州洛根的太空动力学实验室建造了这台科学仪器。科罗拉多州玻尔得的鲍尔航空航天技术公司制造了这个航天器。科学数据处理在帕萨迪纳市的加州理工学院IPAC分校进行。加州理工学院为NASA管理喷气推进实验室。 喷气推进实验室为NASA科学任务理事会管理和运营WISE。加州大学洛杉矶分校的爱德华·赖特是首席研究员。这项任务是在NASA探索者计划下竞争选出的,该计划由位于马里兰州格林贝尔特的NASA戈达德太空飞行中心管理。 如欲了解更多关于NEOWISE的信息,请访问: https://www.nasa.gov/neowise 如欲了解更多关于WISE的信息,请访问: http://www.nasa.gov/wise 参考来源: https://www.nasa.gov/feature/jpl/nasa-telescope-takes-12-year-time-lapse-movie-of-entire-sky

詹姆斯·韦伯太空望远镜发现双星在太空中形成“指纹”

詹姆斯·韦伯太空望远镜发现双星在太空中形成“指纹”

这张来自NASA詹姆斯·韦伯太空望远镜的图片显示,Wolf-Rayet 140中的两颗恒星每八年产生一次类似于环形的尘埃壳层。每一个环都是恒星靠近时产生,它们的恒星风相互碰撞,压缩气体并形成尘埃环。 影像来源:NASA, ESA, CSA, STScI, JPL-Caltech 一张新照片显示了至少17个尘埃环,它们是由一种罕见的恒星及其伴星在天体舞蹈中形成的。 NASA的詹姆斯·韦伯太空望远镜的一幅新图像显示了一幅非凡的宇宙景象:至少有17个同心尘埃环从一对恒星中发出。这两个星系距离地球仅5000光年,合称为Wolf-Rayet 140。 当两颗恒星靠近时,它们的恒星风(恒星吹向太空的气体流)相遇,压缩气体并形成尘埃时,就形成了尘埃环。这两颗恒星的轨道大约每8年让它们相遇一次;就像树干上的年轮一样,尘埃环标志着时间的流逝。 “我们正在研究这个系统产生的灰尘超过一个世纪。”美国国家科学基金会NOIRLab的天文学家刘瑞安说,刘瑞安是一项关于这个系统的新研究的主要作者,该研究于10月12日发表在《自然天文学》杂志上。“这张图片也说明了这台望远镜的灵敏度有多高。以前,我们只能用地面望远镜看到两个尘埃环。现在我们至少看到了17个。” 除了韦伯的整体灵敏度外,它的中红外仪器(MIRI)也特别适合研究尘埃环——或者刘瑞安和他的同事们所说的壳层,因为它们比图片中显示的更厚更宽。韦伯的科学仪器探测到红外光,这是一种人眼看不见的波长范围。MIRI探测到最长的红外波长,这意味着它通常可以看到比韦伯的其他仪器看到更冷的物体——包括尘埃环。MIRI的光谱仪还揭示了尘埃的成分,主要是由一种被称为沃尔夫-拉叶星的恒星喷射出的物质形成。 Wolf-Rayet 140中的两颗恒星每次轨道将它们相遇时都会产生尘埃环或尘埃壳。在这段视频中展示了它们轨道的可视化,这有助于说明它们的相互作用如何产生由NASA的韦伯太空望远镜观测到的指纹状图案。 影像来源:NASA, ESA, CSA, STScI, JPL-Caltech MIRI是通过NASA和ESA(欧洲航天局)之间的50-50伙伴关系开发。位于南加州的的喷气推进实验室为NASA领导了这项工作,一个由欧洲天文研究所组成的多国联盟为ESA做出了贡献。 沃尔夫-拉叶星是一种O型恒星,出生时质量至少是我们太阳的25倍,它的寿命接近尾声,届时它可能会坍缩并形成黑洞。沃尔夫-拉叶星比年轻时燃烧得更热,它会产生强大的风,将大量气体推向太空。在这个过程中,这对特别的沃尔夫-拉叶星的质量可能减少了一半以上。 Wolf-Rayet恒星是一个O型恒星,出生时的质量至少是我们太阳的25倍,它的寿命接近尾声,届时可能会坍缩并形成黑洞。沃尔夫-雷耶特恒星比年轻时燃烧得更热,它会产生强大的风,将大量气体推向太空。这对特殊的沃尔夫-拉叶星可能在这个过程中失去了超过一半的原始质量。 在风中形成尘埃 将气体转化为尘埃有点像将面粉转化为面包:它需要特定的条件和成分。恒星中最常见的元素氢本身不能形成尘埃。但由于沃尔夫-拉叶星的质量太大,它们也会喷射出通常存在于恒星内部深处的更复杂的元素,包括碳。风中的重元素在进入太空时冷却,然后在来自两颗恒星的风相遇的地方被压缩,就像两只手揉面一样。 其他一些沃尔夫-拉耶特系统形成尘埃,但没有一个已知的环像沃尔夫-拉耶特140那样。之所以形成这种独特的环形图案,是因为WR 140中沃尔夫-拉叶星的轨道是拉长的,而不是圆形的。只有当恒星靠得很近——地球和太阳之间的距离差不多——它们的风相撞时,气体才有足够的压力形成尘埃。如果是圆形轨道,Wolf-Rayet双星可以连续产生尘埃。 这张图显示了太阳(左上角)与Wolf-Rayet 140星系中的两颗恒星的相对大小。这颗O型恒星的质量大约是太阳的30倍,而它的伴星质量大约是太阳的10倍。 影像来源:NASA/JPL-Caltech 刘瑞安和他的合著者认为,WR 140的风也会将周围地区的残余物质吹走,清除掉它们可能与之碰撞的残余物质,这可能是光环保持原样而不是被涂抹或分散的原因。可能还有更多的环变得如此模糊和分散,甚至连韦伯都无法在数据中看到它们。 与我们的太阳相比,沃尔夫-拉叶星可能看起来很奇特,但它们可能在恒星和行星的形成中发挥了作用。当一颗沃尔夫-拉叶星清理出一个区域时,被扫走的物质会在外围堆积起来,密度足以形成新的恒星。有证据表明,太阳就是在这种情况下形成。 利用MIRI中分辨率光谱学模式的数据,这项新的研究提供了迄今为止最好的证据,证明沃尔夫-拉叶星产生富含碳的尘埃分子。更重要的是,这些保存的尘埃壳表明,这些尘埃可以在恒星之间的恶劣环境中生存,为未来的恒星和行星提供物质。 问题是,虽然天文学家估计银河系中至少应该有几千个沃尔夫-拉叶星,但迄今为止只发现了大约600个。 “尽管沃尔夫-拉叶星在我们银河系中很罕见,因为它们的寿命非常短,但在整个银河系的历史中,它们很可能在爆炸和/或形成黑洞之前产生了大量尘埃。”帕特里克·莫里斯说,他是加利福尼亚州帕萨迪纳市加州理工学院的天体物理学家,也是这项新研究的合著者。“我认为,有了NASA的新太空望远镜,我们将更多地了解这些恒星如何塑造恒星之间的物质,以及如何触发星系中新恒星的形成。” 詹姆斯·韦伯太空望远镜是世界上首屈一指的太空科学天文台。韦伯将解开我们太阳系中的谜团,展望其他恒星周围的遥远世界,探索我们宇宙的神秘结构和起源以及我们在其中的位置。韦伯是由NASA及其合作伙伴 ESA和CSA领导的一项国际计划。 亚利桑那大学的乔治·里克是米里美国科学团队的负责人。英国天文技术中心的吉莉安·赖特是MIRI欧洲首席研究员。英国ATC的阿利斯泰尔·格拉斯是MIRI仪器科学家,迈克尔·莱斯勒是JPL的美国项目科学家。拉斯洛·塔马斯与英国ATC共同管理欧洲联盟。MIRI制冷机的开发由喷气推进实验室领导和管理,与位于马里兰州格林贝尔特的NASA戈达德航天飞行中心和位于加利福尼亚州雷东多海滩的诺斯罗普·格鲁曼公司合作。加州理工学院为NASA管理喷气推进实验室。 有关韦伯任务的更多信息,请访问: https://www.nasa.gov/webb 参考来源: https://www.nasa.gov/feature/jpl/star-duo-forms-fingerprint-in-space-nasa-s-webb-finds

NASA的雨燕、费米任务探测到异常的宇宙爆炸

NASA的雨燕、费米任务探测到异常的宇宙爆炸

10月9日,星期日,一股异常明亮、持续时间长的高能辐射脉冲席卷地球,世界各地的天文学家都为之着迷。这种辐射来自于伽马射线爆发(GRB),这是宇宙中最强大的一类爆炸,是已知最明亮的事件之一。 东部时间周日上午,一波X射线和伽马射线穿过太阳系,触发了NASA费米伽马射线太空望远镜、尼尔·格雷尔斯雨燕天文台、Wind航天器以及其他探测器。世界各地的望远镜转向该地点研究余波,新的观测仍在继续。 雨燕的X射线望远镜在首次探测到GRB 221009A大约一小时后捕捉到了它的余辉。明亮的光环是X射线从位于爆炸方向的银河系内无法观测的尘埃层散射而形成。 影像来源:NASA/Swift/A. Beardmore (University of Leicester) 被称为GRB 221009A的爆炸为第10届费米研讨会提供了一个意想不到的令人兴奋的开端,该研讨会是一次伽马射线天文学家的聚会,目前正在南非的约翰内斯堡举行。“可以肯定地说,这次会议真的是以一声巨响拉开了序幕,每个人都在谈论这个问题。”参加会议的NASA戈达德太空飞行中心费米项目副科学家朱迪·拉库辛说。 根据费米大区域望远镜(LAT)的数据构建的序列,显示了以GRB 221009A位置为中心的伽马射线天空。每一帧显示能量大于1亿电子伏特(MeV)的伽马射线,颜色越亮表示伽马射线信号越强。它们总共代表了超过10个小时的观测。来自我们银河系中平面的辉光呈现为一条宽的对角线带。图像的大约横跨天空20度。 图片来源:NASA/DOE/Fermi LAT Collaboration 该信号来自天箭座方向,经过估计19亿年才到达地球。天文学家认为,这代表了一个新黑洞的诞生,这个黑洞形成于一颗在自身重力下坍缩的大质量恒星的中心。在这种情况下,一个新生的黑洞驱动着接近光速的强大粒子喷流。这些喷流穿过恒星,向太空发射X射线和伽马射线。 雨燕的紫外/光学望远镜在可见光下拍摄的图像显示了GRB 221009A的余辉如何在大约10小时的过程中消退。这次爆炸出现在射手座,发生在19亿年前。图像直径约为4弧分。 影像来源:NASA/Swift/B. Cenko 这次爆发还为国际空间站上的两项实验——NASA的NICER X射线望远镜和日本的全太天X射线图像监测器(MAXI)——之间的联系提供了一个期待已久的首次观测机会。该连接于4月启动,被称为轨道高能监测警报网络(OHMAN)。它使NICER能够迅速转向MAXI探测到的爆发,这些操作以前需要地面科学家的干预。 “OHMAN提供了一个自动警报,使NICER能够在望远镜探测到放射源后三小时内进行跟踪。”戈达德NICER科学负责人扎文·阿佐马尼安表示。“未来的响应时间可能缩短至几分钟。” 这一古老爆炸的光带来了对恒星坍缩、黑洞的诞生、接近光速的物质的行为和相互作用、遥远星系的条件等问题的新见解。另一个如此明亮的GRB可能几十年内都不会出现。 据初步分析,费米大区域望远镜(LAT)探测到这次爆发长达10个多小时。爆发如此明亮和持久的一个原因是,对于GRB来说,它离我们相对较近。 “这次爆发比典型的GRB要近得多,这令人兴奋,因为它让我们能够探测到许多细节,否则这些细节会太微弱而无法探测。”费米LAT合作组织成员罗伯塔·皮莱拉说,他领导了关于爆发的初步交流,也是意大利巴里理工大学的博士生。“但不管距离远近,它也是有史以来见过的最有活力和最明亮的爆发之一,这都让人倍感兴奋。” 参考来源: https://www.nasa.gov/feature/goddard/2022/nasa-s-swift-fermi-missions-detect-exceptional-cosmic-blast

哈勃拍摄到一对相互作用的星系

哈勃拍摄到一对相互作用的星系

The two interacting galaxies making up the pair known as Arp-Madore 608-333 seem to float side by side in this image from the NASA/ESA Hubble Space Telescope. Though they appear serene and unperturbed, the two are subtly warping one another through a mutual gravitational interaction that is disrupting and distorting both galaxies. Hubble’s Advanced Camera for Surveys captured this drawn-out galactic interaction. The interacting galaxies in Arp-Madore 608-333 are part of an effort to build up an archive of interesting targets for more detailed future study with Hubble, ground-based telescopes, and the NASA/ESA/CSA James Webb Space Telescope. To build up this archive, astronomers scoured existing astronomical catalogues for a list of targets spread throughout the night sky. They hoped to include objects already identified as…

哈勃太空望远镜探测到保护一对矮星系的防护罩

哈勃太空望远镜探测到保护一对矮星系的防护罩

数十亿年来,银河系最大的卫星星系——大麦哲伦星云和小麦哲伦星云——经历了一段危险的旅程。当它们被拉向我们的银河系时,它们相互环绕,开始解体,留下气态碎片的痕迹。然而,令天文学家困惑的是,这些矮星系仍然完好无损,恒星形成仍在继续。 “很多人都在努力解释,这些物质流为什么会在那里。”科罗拉多学院助理教授达内什·克里希纳劳说。“如果这些星系中的气体被移除,它们怎么还在形成恒星?” 借助于NASA哈勃太空望远镜和一颗名为远紫外光谱探测器(FUSE)的退役卫星的数据,由克里希纳劳领导的一组天文学家终于找到了答案:麦哲伦星系被星系冕(一种热增压气体的保护屏障)所包围。星系冕将这两个星系被包裹起来,防止它们的气体供应被银河系吸走,从而使它们能够继续形成新的恒星。 研究人员利用类星体紫外线的光谱观测来探测和绘制麦哲伦星系冕,这是一种围绕着大麦哲伦星云和小麦哲伦星云的热增压气体的扩散晕。图中以紫色显示,星系冕从构成麦哲伦星云的主要恒星、气体和尘埃中延伸出超过100,000光年,与围绕银河系的更热、更广泛的星系冕混杂在一起。麦哲伦星云是距离地球约16万光年的矮星系,是银河系中最大的卫星星系,被认为是第一个围绕银河系并坠落到银河系的星系。这段旅程已经开始将曾经有多条双臂的条状螺旋星系分解成形状更不规则、尾翼更长的碎片星系。星系冕被认为是一个缓冲区,保护矮星系的重要恒星形成气体免受更大银河系的引力影响。麦哲伦星系冕的探测是通过分析来自28个遥远背景类星体的紫外线模式进行。当类星光穿过星系冕时,紫外线的某些波长(颜色)被吸收。类星体光谱印上了构成星系冕气体的碳、氧和硅离子的独特特征。由于每个类星体探测星系冕的不同部分,研究团队还能够证明,气体量随着距离大麦哲伦星云中心的距离而减少。这项研究使用了哈勃宇宙起源光谱仪(COS)和远紫外光谱仪(FUSE)对类星体的观测存档。类星体还被用来探测麦哲伦星流、银河系的流出物以及仙女座星系周围的光晕。 插图来源:STScI,Leah Hustak 这项刚刚发表在《自然》杂志上的发现,解决了星系演化的一个新方面。马里兰巴尔的摩太空望远镜科学研究所的联合研究员安德鲁·福克斯说:“星系被包裹在气态茧中,起到了防御其他星系的作用。”。 天文学家几年前就预言了星系冕的存在。威斯康星大学麦迪逊分校的联合研究员埃琳娜·德昂吉解释说:“我们发现,如果我们在麦哲伦星云坠落入银河系的模拟中加入星系冕,我们就可以首次解释提取气体的质量。我们知道大麦哲伦星云的质量应该大到足以形成星系冕。” 但是,尽管星系冕从麦哲伦星云延伸超过10万光年,覆盖了南部天空的大部分,但实际上它是不可见的。要想把它画出来,需要在30年的存档数据中寻找合适的测量方法。 研究人员认为,星系冕是数十亿年前坍缩形成星系的原始气体云的残余物。虽然已经在更远的矮星系周围发现了星系冕,但天文学家此前从未能够如此详细地探测星系冕。 “计算机模拟有很多关于它们应该是什么样子的预测,它们在数十亿年里应该如何相互作用,但从观测角度来看我们无法真正测试大多数预测,因为矮星系通常很难被发现。”克里希纳劳说。“因为它们就在我们的家门口,所以麦哲伦星云为研究矮星系如何相互作用和演化提供了理想的机会。” 为了寻找麦哲伦星系冕的直接证据,该团队梳理了哈勃望远镜和 FUSE 的档案,寻找位于其背后数十亿光年的类星体的紫外线观测结果。类星体是星系中极其明亮的核心,里面隐藏着大量活跃的黑洞。该团队推断,研究小组推断,尽管星系冕本身非常暗,无法探测到,但它应该像一种雾一样可见,遮蔽并吸收背景中类星体发出的不同模式的亮光。过去,哈勃对类星体的观测曾用于绘制仙女座星系周围的星系冕图。 通过分析28个类星体的紫外光模式,,该团队能够探测和表征大麦哲伦云周围的物质,从而确认星系冕的存在。正如预测的那样,类星体光谱上印着碳、氧和硅的独特特征,这些特征构成了环绕星系的热等离子体晕。 探测星系冕的能力需要极其详细的紫外光谱。“哈勃和FUSE的分辨率对这项研究至关重要,”克里希纳罗解释道。“星系冕气体非常分散,甚至几乎没有。”此外,它还与其他气体混合,包括从麦哲伦云中抽取的气流和源自银河系的物质。 通过绘制结果,该团队还发现气体量随着距离大麦哲伦星云中心的距离而减少。 “这是一个完美的迹象,表明这个星系冕确实存在。”克里希纳劳说。 “它真的是在包裹着星系并保护它。” 这么薄薄的一层气体怎么能保护一个星系免于毁灭呢? “任何试图进入星系的物体都必须首先穿过这些物质,这样它才能吸收一些冲击力。”克里希纳罗解释说。“此外,星系冕是第一种可以提取的物质。在放弃少量星系冕的同时,它也保护星系内部的气体,从而能够形成新的恒星。” 哈勃太空望远镜是NASA和ESA(欧洲航天局)之间的国际合作项目。位于马里兰州格林贝尔特的NASA戈达德太空飞行中心负责管理望远镜。位于马里兰州巴尔的摩的太空望远镜科学研究所(STScI)负责哈勃望远镜的科学操作。STScI由位于华盛顿特区的天文学研究大学协会为NASA运营。 远紫外光谱探测器(FUSE)是NASA、加拿大航天局(CSA)和法国航天局(CNES)之间的国际合作项目,于1999年至2007年投入使用。 参考来源: https://www.nasa.gov/feature/goddard/2022/hubble-detects-protective-shield-defending-a-pair-of-dwarf-galaxies