为恒星爆炸设置时钟

为恒星爆炸设置时钟

影像来源:X射线:NASA/CXC/GSFC/B. J. Williams et al.;可见光:NASA/ESA/STScI 虽然天文学家已经看到了银河系和附近星系中数十颗爆炸恒星的碎片,但通常很难确定恒星消亡的时间线。通过使用NASA望远镜研究邻近星系中壮观的超新星遗迹,一组天文学家已经找到了足够的线索来帮助时光倒流。 超新星遗迹SNR 0519-69.0(简称SNR 059)是白矮星爆炸产生的碎片。在达到临界质量后,无论是从伴星中吸取物质还是与另一颗白矮星合并,恒星都经历了热核爆炸并被摧毁。科学家们将这种被称为Ia型的超新星用于广泛的科学研究,从热核爆炸研究到测量数十亿光年的星系距离。 SNR 0519位于大麦哲伦星云中,这是一个距离地球160,000光年的小星系。这张合成图像显示了来自NASA钱德拉X射线天文台的X射线数据和来自NASA哈勃太空望远镜的光学数据。来自SNR 0519的低、中、高能量X射线分别显示为绿色、蓝色和紫色,其中一些颜色重叠显示为白色。光学数据用红色显示了遗迹的边界,用白色显示了遗迹周围的恒星。 天文学家将钱德拉和哈勃的数据与NASA退役的斯皮策太空望远镜的数据相结合,以确定SNR 0519中的恒星爆炸的时间,并了解超新星发生的环境。这些数据为科学家们提供了一个机会,让他们“倒带”观看恒星进化的电影,并弄清楚恒星爆炸是从何时开始。 研究人员比较了2010年、2011年和2020年的哈勃图像,以测量爆炸冲击波中物质的速度,爆炸冲击波的速度约为每小时380万至550万英里(900万公里)。如果速度接近这些估计速度的上限,天文学家确定,爆炸产生的光应该在大约670年前抵达地球,即英法百年战争和中国明朝鼎盛时期。 然而,很可能自最初爆炸以来,爆炸冲击波中物质的速度已经放缓,而且爆炸发生的时间比670年前更近。钱德拉和斯皮策的数据提供了这种情况的线索。天文学家发现,残骸的X射线中最亮的区域是移动最慢的物质所在的位置,而X射线发射与移动最快的物质无关。 这些结果表明,一些冲击波已经撞击到残余物周围的稠密气体中,导致它在行进时减速。天文学家可以利用哈勃望远镜的额外观测来更精确地确定恒星的消亡时间。 描述这些结果的论文发表在《天体物理学杂志》8月刊上,预印本可在此处获得。这篇论文的作者是布赖恩·威廉姆斯(位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心);帕尔维兹·加瓦米安(马里兰州陶森市陶森大学);伊沃·塞滕扎尔(新南威尔士大学,澳大利亚国防军学院,澳大利亚堪培拉);斯蒂芬·雷诺兹(北卡罗来纳州立大学,北卡罗来纳州罗利);卡齐米日·博尔科夫斯基(北卡罗来纳州罗利市北卡罗来纳州立大学)和罗伯特·彼得(GSFC)。NASA的马歇尔太空飞行中心管理钱德拉计划。史密森天体物理观测站的钱德拉X射线中心控制着马萨诸塞州剑桥市的飞行操作和马萨诸塞州伯灵顿市的飞行操作。 参考来源: https://www.nasa.gov/mission_pages/chandra/images/setting-the-clock-on-a-stellar-explosion.html

哈勃太空望远镜发现了螺旋状恒星,提供了一个进入早期宇宙的窗口

哈勃太空望远镜发现了螺旋状恒星,提供了一个进入早期宇宙的窗口

大自然喜欢螺旋——从飓风的漩涡,到围绕新生恒星的风车状原行星盘,再到我们宇宙中广阔的螺旋星系领域。 现在天文学家们困惑地发现,在银河系的卫星星系小麦哲伦星云中,年轻的恒星正在螺旋状地进入一个巨大星团的中心。 在这个巨大、形状奇特的恒星托儿所NGC346中,螺旋的外臂可能正在以一种类似河流的气体和恒星运动来孕育恒星的形成。研究人员说,这是一种促进恒星诞生的有效方法。 位于小麦哲伦星云中的大质量星团NGC 346,以其不同寻常的形状长期吸引着天文学家。现在,研究人员使用两种不同的方法确定,这种形状部分是由于恒星和气体以类似河流的运动螺旋进入这个星团的中心。叠加在NGC 346上的红色螺旋描绘了恒星和气体向中心移动的轨迹。科学家表示,这种螺旋运动是从外部向星团中心推进恒星形成的最有效方式。 影像来源:Illustration: NASA, ESA, Andi James (STScI) 小麦哲伦星云的化学成分比银河系更简单,这使得它与较年轻的宇宙中发现的星系相似,那时较重的元素更加稀缺。正因为如此,小麦哲伦星云中的恒星燃烧的温度更高,因此燃料耗尽的速度比我们银河系的恒星更快。 尽管小麦哲伦星云是早期宇宙的代表,但它距离我们20万光年,也是我们最近的银河系邻居之一。 了解小麦哲伦星云中的恒星是如何形成的,为宇宙历史早期大爆炸后约20至30亿年的“婴儿潮”(宇宙现在有138亿年历史)的恒星诞生风暴提供了新的线索。 新的结果发现,那里的恒星形成过程与我们银河系相似。 NGC 346直径只有150光年,质量相当于5万个太阳。它迷人的形状和快速的恒星形成率让天文学家困惑不已。NASA的哈勃太空望远镜和欧洲南方天文台的甚大望远镜(VLT)联合起来,才揭开了这个神秘的恒星巢穴的行为。 “恒星是塑造宇宙的机器。没有恒星,我们就不会有生命,但我们并不完全了解它们是如何形成的。”巴尔的摩太空望远镜科学研究所的研究负责人埃琳娜·萨比解释说。“我们有几个模型进行预测,其中一些预测相互矛盾。我们想确定是什么在调节恒星形成的过程,因为这些是我们还需要了解早期宇宙中所看到的规律。” 研究人员用两种不同的方法确定了NGC 346中恒星的运动。萨比和她的团队使用哈勃望远镜测量了11年来恒星位置的变化。这个区域的恒星以每小时2,000英里的平均速度移动,这意味着在11年里它们移动了2亿英里。这大约是太阳和地球之间距离的两倍。 但这个星团在邻近的星系中相对较远。这意味着观测到的运动量非常小,因此很难测量。这些异常精确的观测之所以成为可能,完全是因为哈勃望远镜的高分辨率和高灵敏度。此外,哈勃长达30年的观测历史为天文学家提供了一个基线,可以随着时间的推移跟踪微小的天体运动。 第二个团队由欧洲航天局AURA/STScI的彼得·宰德勒领导,使用基于地面的VLT的多单元光谱探索者(MUSE)仪器测量径向速度,以确定物体是在接近观察者还是在远离观察者。 “真正令人惊讶的是,我们用不同的设备用两种完全不同的方法,基本上得出了相同的结论,彼此独立。”宰德勒说。“使用哈勃,你可以看到恒星,但使用MUSE,我们也可以看到气体在三维空间的运动,这证实了万物向内螺旋运动的理论。” 但为什么是螺旋形? “螺旋是一种很好的、自然的方式,可以让恒星从外部流向星团中心。”宰德勒解释说。“这是推动恒星和气体向中心移动的最有效方式。” 这项研究NGC 346的哈勃数据有一半已经存档。第一次观测是在11年前进行。它们最近被重复用来追踪恒星随时间的运动。鉴于望远镜的寿命,哈勃数据档案现在包含超过32年的天文数据,为前所未有的长期研究提供动力。 “哈勃档案真是一座金矿。”萨比说。“多年来,哈勃观测到很多有趣的恒星形成区域。鉴于哈勃表现如此之好,我们实际上可以重复这些观测。这真的可以推进我们对恒星形成的理解。” 研究团队的发现发表在9月8日的《天体物理学杂志》上。 NASA的詹姆斯·韦伯太空望远镜的观测应该能够分辨出星团中质量较低的恒星,从而提供该区域更全面的视图。在韦伯的生命周期内,天文学家将能够重复这个实验,并测量低质量恒星的运动。然后,他们可以比较大质量恒星和小质量恒星,最终了解这个托儿所的全部动态。 大自然喜欢螺旋——从飓风的漩涡,到围绕新生恒星的风车状原行星盘,再到我们宇宙中广阔的螺旋星系领域。现在天文学家们困惑地发现,在银河系的卫星星系小麦哲伦星云中,年轻的恒星正在螺旋状地进入一个巨大星团的中心。 影像来源: NASA’s Goddard Space Flight Center; 首席制片人:Paul Morris 哈勃太空望远镜是NASA和欧洲航天局(ESA)之间的国际合作项目。位于马里兰州格林贝尔特的NASA戈达德太空飞行中心负责管理这台望远镜。位于巴尔的摩的太空望远镜科学研究所(STScI)负责哈勃太空望远镜的科学操作。STScI由位于华盛顿特区的天文学研究大学协会为NASA运营。 参考来源: https://www.nasa.gov/feature/goddard/2022/nasas-hubble-finds-spiraling-stars-providing-window-into-early-universe

詹姆斯·韦伯太空望远镜拍摄到了宇宙狼蛛

詹姆斯·韦伯太空望远镜拍摄到了宇宙狼蛛

在这张横跨340光年的拼接图像中,韦伯的近红外相机(NIRCam)以全新的视角展示了狼蛛星云的恒星形成区域,其中包括数以万计从未见过的年轻恒星,这些恒星以前被宇宙尘埃笼罩。最活跃的区域似乎闪烁着巨大的年轻恒星,呈淡蓝色。 影像来源:NASA, ESA, CSA, STScI, Webb ERO Production Team 很久以前,一个宇宙创造的故事展开了:数千颗从未见过的年轻恒星被发现在一个名为剑鱼座30号星云的恒星孕育区,由NASA的詹姆斯·韦伯太空望远镜拍摄。在之前的望远镜图像中,狼蛛星云因其图像中出现的尘埃细丝而被昵称为狼蛛星云,长期以来,该星云一直是研究恒星形成的天文学家的最爱。除了年轻的恒星,韦伯还揭示了遥远的背景星系,以及星云气体和尘埃的详细结构和组成。 狼蛛星云位于大麦哲伦星云星系中,距离我们只有161,000光年,是本星系群中最大、最亮的恒星形成区,也是距离我们银河系最近的星系。它是已知最热、最大质量恒星的所在地。天文学家将韦伯的三台高分辨率红外仪器聚焦在狼蛛星云上。用韦伯的近红外相机 (NIRCam) 观察,该地区就像一个穴居狼蛛的家,布满了蛛丝。位于NIRCam图像中心的星云空腔被大量年轻恒星发出的炽热辐射挖空,这些恒星在图像中闪耀着淡蓝色的光芒。只有最稠密的星云周围区域能够抵御这些恒星强大的恒星风的侵蚀,形成似乎指向星团的柱子。这些柱子包含正在形成的原恒星,这些原恒星最终将从它们的尘埃茧中出现,并依次形成星云。 韦伯的近红外光谱仪(NIRSpec)拍摄到一颗年轻恒星正在这么做。天文学家先前认为这颗恒星可能更老一些,并且已经在清除其周围的空腔。然而,NIRSpec显示,这颗恒星才刚刚开始从它的柱子中出现,并且仍然保持着一个绝缘的尘埃云围绕着它。如果没有韦伯在红外波长上的高分辨率光谱,就不可能揭示这一恒星形成过程。 当在韦伯中红外仪器(MIRI)检测到的较长红外波长下观察时,该区域呈现出不同的外观。炽热的恒星逐渐消失,而较冷的气体和尘埃则发光。在恒星孕育云中,光点表明嵌入的原恒星仍在增加质量。虽然较短波长的光被星云中的尘埃颗粒吸收或散射,因此永远不会到达韦伯而被探测到,但较长的中红外波长会穿透尘埃,最终揭示了一个以前看不见的宇宙环境。 在中红外仪器(MIRI)捕捉到的较长波长的光中,韦伯聚焦于中心星团周围的区域,揭示了狼蛛星云的一个非常不同的视图。在这种波长的光中,星团中年轻的炽热恒星的亮度逐渐减弱,发光的气体和尘埃出现。丰富的碳氢化合物照亮了尘埃云的表面,如图中蓝色和紫色所示。 影像来源:NASA, ESA, CSA, STScI, Webb ERO Production Team 狼蛛星云对天文学家感兴趣的原因之一是,该星云的化学成分与在宇宙“宇宙正午”观察到的巨大恒星形成区域相似,当时宇宙只有几十亿年,恒星形成处于高峰期。我们银河系中的恒星形成区域并没有像狼蛛星云那样以同样的速度产生恒星,并且具有不同的化学成分。这使得狼蛛成为最接近(即最容易详细看到)宇宙达到辉煌的正午时发生的事情的例子。韦伯将为天文学家提供机会,将狼蛛星云中恒星形成的观测结果与望远镜从宇宙正午时期对遥远星系的深度观测结果进行比较和对比。 尽管人类已经观察了数千年的恒星,但恒星形成的过程仍然有许多谜团——其中许多是因为我们之前无法获得恒星孕育区厚厚云层背后发生的事情的清晰图像。韦伯已经开始揭示一个从未见过的宇宙,并开始重写恒星诞生的故事。 詹姆斯·韦伯太空望远镜是世界上首屈一指的太空科学天文台。韦伯将解开我们太阳系中的谜团,展望其他恒星周围的遥远世界,探索我们宇宙的神秘结构和起源以及我们在其中的位置。韦伯是由NASA及其合作伙伴 ESA和CSA领导的一项国际计划。 参考来源: https://www.nasa.gov/feature/goddard/2022/a-cosmic-tarantula-caught-by-nasa-s-webb

詹姆斯·韦伯太空望远镜第一批全彩图像可听化合集

詹姆斯·韦伯太空望远镜第一批全彩图像可听化合集

1、Webb’s Cosmic Cliffs Sonification 2、Webb’s Cosmic Cliffs Sonification: Sky 3、Webb’s Cosmic Cliffs Sonification: Mountains 4、Webb’s Cosmic Cliffs Sonification: Stars 5、Webb’s Southern Ring Nebula Sonification 6、Webb’s Southern Ring Nebula Sonification: Near-Infrared 7、Webb’s Southern Ring Nebula Sonification: Mid-Infrared 8、Webb’s Exoplanet WASP-96 b Sonification

詹姆斯·韦伯太空望远镜的第一批全彩图像,数据被转化为声音

詹姆斯·韦伯太空望远镜的第一批全彩图像,数据被转化为声音

有一种全新的、沉浸式的方式,可以通过声音探索NASA詹姆斯·韦伯太空望远镜的首批全色红外图像和数据。听众可以进入船底座星云中宇宙悬崖的复杂声景,探索描绘南环星云的两幅图像的对比色调,并识别热气巨行星WASP-96 b透射光谱中的各个数据点。“音乐进入了我们的情感中心。”多伦多大学的音乐家和物理学教授马特·拉索说。“我们的目标是通过声音让韦伯的图像和数据易于理解——帮助听众创建自己的心理图像。” 一个由科学家、音乐家和盲人和视障人士组成的团队,在韦伯任务和NASA学习宇宙的支持下,致力于调整韦伯的数据。 韦伯的宇宙悬崖可听化 影像来源:图片:NASA、ESA、CSA 和 STScI; 无障碍制作:NASA、ESA、CSA、STScI 和 Kimberly Arcand (CXC/SAO)、Matt Russo 和 Andrew Santaguida(系统声音)、Quyen Hart (STScI)、Claire Blome (STScI) 和 Christine Malec(顾问)。 NASA韦伯望远镜拍摄的船底星云宇宙悬崖的近红外图像,已被映射为一段交响乐般的声音。音乐家们为星云中半透明、薄雾状的区域和非常密集的气体和尘埃区域分配了独特的音符,最终形成了嗡嗡声的音景。 可听化处理从左到右扫描图像。音轨充满活力,内容丰富,代表了这个巨大的气态空洞中的细节,看起来像一座山脉。图像上半部分的气体和尘埃以蓝色色调和有风的、类似无人机的声音表示。图像的下半部分以橙红色和红色的阴影表示,构图更清晰、旋律更优美。 图像中的光线越亮,声音越大。光的垂直位置也决定了声音的频率。例如,图像顶部附近的明亮灯光听起来声音大而高,但靠近图像中间位置的强光则声音大而音调低。图像中出现在较低位置的较暗、被尘埃遮蔽的区域,用较低的频率和更清晰、不失真的音符来表示。 韦伯的南环星云可听化 影像来源:图片:NASA、ESA、CSA 和 STScI; 无障碍制作:NASA、ESA、CSA、STScI 和 Kimberly Arcand (CXC/SAO)、Matt Russo 和 Andrew Santaguida(系统声音)、Quyen Hart (STScI)、Claire Blome (STScI) 和 Christine Malec(顾问)。 美国宇航局的韦伯望远镜捕获了南环星云近红外光(左)和中红外光(右)的两幅图像————每幅图像都经过了声音处理。 在这个可听化处理中,图像中的颜色被映射到声音的音调——光的频率被直接转换成声音的频率。近红外光由轨道开始处的较高频率范围表示。中途,音符发生变化,整体变得较低,以反映中红外包含更长波长的光。 仔细听15秒和44秒。这些音符与近红外和中红外图像的中心对齐,恒星出现在“动作”中心的位置。在轨道开始的近红外图像中,只有一颗恒星清晰可见,声音更大。在音轨的后半部分,听众会在高音之前听到一个低音,这表示在中红外光中检测到两颗恒星。较低的音符代表形成这个星云较红的恒星,第二个音符代表看起来更亮更大的恒星。 韦伯的系外行星WASP-96b可听化 影像来源:图片:NASA、ESA、CSA 和 STScI; 无障碍制作:NASA、ESA、CSA、STScI 和 Kimberly Arcand (CXC/SAO)、Matt Russo 和 Andrew Santaguida(系统声音)、Quyen Hart (STScI)、Claire Blome (STScI) 和 Christine Malec(顾问)。 NASA的韦伯望远镜观测到了热气体巨系外行星WASP-96 b的大气特征——其中包含水的清晰特征——由此产生的透射光谱的各个数据点被转化为声音。 可听化从左到右扫描光谱。从下到上,Y轴的范围表示遮挡的光从少到多。X轴的范围从左侧的0.6微米到右侧的2.8微米。每个数据点的音高对应于每个点所代表的光的频率。波长越长,光的频率越低,则听到较低的音调。体积表示在每个数据点中检测到的光量。 四个水特征由水滴落下的声音表示。这些声音简化了数据——水被辨别为具有多个数据点的特征。声音仅与数据中的最高点一致。 这些音轨首先支持盲人和低视力的听众,但其设计旨在吸引任何收听者。“这些合成声音提供了一种不同的方式来体验韦伯第一批数据中的详细信息。类似于书面描述是视觉图像的独特翻译,可听化处理也通过将颜色、亮度、恒星位置或水吸收特征等信息编码为声音来翻译视觉图像,”位于马里兰州巴尔的摩的太空望远镜科学研究所的高级教育和外联科学家昆恩·哈特说。“我们的团队致力于确保所有人都能接触到天文学。” 该项目与“路缘坡效应”类似,这是一项支持各种行人的无障碍要求。马萨诸塞州剑桥钱德拉X射线中心的可视化科学家金伯利·阿坎德解释说:“当削减路障时,首先使用轮椅的人会受益,同时拄着拐杖走路的人和推着婴儿车的父母也会受益。”阿尔坎德领导了NASA最初的数据可听化项目,现在代表NASA的“学习宇宙”从事这项工作。“我们希望这些可听化能够影响到同样广泛的观众。” 阿尔坎德领导的一项调查的初步结果显示,失明或视力低下的人,以及有视力的人都报告说,他们通过聆听了解了一些有关天文图像的信息。参与者还分享了与他们产生深刻共鸣的听觉体验。“受访者的反应各不相同——从敬畏到有点紧张,”阿尔坎德继续说道。“一个重要的发现来自视力正常的人。他们报告说,这种经历帮助他们了解盲人或视力低下的人如何以不同方式获取信息。” 这些音轨不是在太空中记录的真实声音。相反,鲁索和他的合作者、音乐家安德鲁·桑塔吉达将韦伯的数据映射为声音,精心创作音乐,以准确地呈现团队希望听众关注的细节。从某种程度上说,这些声音处理就像现代舞或抽象绘画——它们将韦伯的图像和数据转换为一种新的媒介,以吸引和激励听众。 克里斯汀·马拉克是盲人和低视力社区的一员,她也支持这个项目,她说她用多种感官体验了这些音轨。“当我第一次听到可听化时,它以一种发自内心的、情感化的方式打动了我,我想象着有视力的人在仰望夜空时的感受。” 这些可听化还有其他深刻的好处。“我想了解声音的每一个细微差别和每一种乐器的选择,因为这主要是我对图像或数据的体验,”马拉克继续说道。总的来说,该团队希望对韦伯的数据进行可听化处理,帮助更多的听众感受到与宇宙的更紧密联系,并激励每个人关注天文台即将到来的天文发现。 詹姆斯·韦伯太空望远镜是世界上首屈一指的太空科学天文台。韦伯将解开我们太阳系中的谜团,展望其他恒星周围的遥远世界,探索我们宇宙的神秘结构和起源以及我们在其中的位置。韦伯是由NASA及其合作伙伴 ESA和CSA领导的一项国际计划。 这些可听化是NASA的宇宙学习计划和詹姆斯·韦伯太空望远镜合作的结果。钱德拉X射线中心(CXC)作为NASA的学习伙伴,领导数据可听化处理。隶属于韦伯任务的科学专家提供他们在韦伯观测、数据和目标方面的专业知识。 NASA的学习宇宙是NASA科学激活计划的一部分,由NASA总部的科学任务理事会负责。科学激活计划将NASA科学专家、真实内容和经验以及社区领袖联系起来,以激活思维并促进对我们的世界和世界以外的更深入理解。通过与科学和科学背后的专家的直接联系,NASA的学习宇宙提供资源和经验,使青年、家庭和终身学习者能够探索科学中的基本问题,体验科学是如何进行的,并自己发现宇宙。 NASA的宇宙学习材料基于NASA根据合作协议支持的工作,根据编号NNX16AC65A合作协议授予太空望远镜科学研究所,与加州理工学院/IPAC、天体物理中心|哈佛和史密森尼和喷气推进实验室合作。 参考来源: https://www.nasa.gov/feature/goddard/2022/nasa-webb-s-first-full-color-images-data-are-set-to-sound

詹姆斯·韦伯太空望远镜探测到系外行星大气中的二氧化碳

詹姆斯·韦伯太空望远镜探测到系外行星大气中的二氧化碳

NASA的詹姆斯·韦伯太空望远镜首次捕捉到太阳系外行星大气层中存在二氧化碳的明确证据。观测到一颗气态巨行星围绕着700光年外的类太阳恒星运行,这为了解行星的组成和形成提供了重要的见解。这一发现被《自然》杂志接受发表,为未来韦伯可能能够探测和测量较小岩质行星稀薄大气中的二氧化碳提供了证据。 WASP-39b是一颗热气体巨星,质量约为木星的四分之一(约与土星相同),直径是木星的1.3倍。它的极度膨胀部分与它的高温有关(约1,600℉或900℃)有关。与太阳系中更冷、更紧凑的气态巨行星不同,WASP-39b的轨道非常接近其恒星——只有太阳和水星之间距离的八分之一——在四个地球日内完成了一次公转。2011年报告的这颗行星,是基于地面探测而被发现,这颗行星凌日或经过恒星前方时,其主星发出的光线出现了微妙的周期性变暗。 此前,包括NASA的哈勃和斯皮策太空望远镜在内的其他望远镜观测显示,该行星大气层中存在水蒸气、钠和钾。韦伯无与伦比的红外灵敏度现在也证实了这个星球上存在二氧化碳。 过滤星光 像WASP-39b这样的凌日行星,我们从侧面而不是从上方观察其轨道,可以为研究人员提供探测行星大气的理想机会。 在凌日期间,一些星光完全被行星遮住(导致整体变暗),一些星光则通过行星的大气层传播。 由于不同的气体吸收不同的颜色组合,研究人员可以分析不同波长光谱中透射光的亮度差异,以确定大气的确切成分。WASP-39 b结合了膨胀的大气和频繁的凌日,是透射光谱的理想目标。 韦伯近红外光谱仪(NIRSpec)的一系列光变曲线显示了随着时间的推移,当行星在2022年7月10日凌日时,来自WASP-39恒星系统的三种不同波长(颜色)的光的亮度变化。 影像来源:插图: NASA, ESA, CSA, and L. Hustak (STScI); 科学分析: The JWST Transiting Exoplanet Community Early Release Science Team 首次明确检测二氧化碳 研究团队使用韦伯的近红外光谱仪(NIRSpec)对WASP-39b进行观测。在这颗系外行星大气的光谱中,一个4.1到4.6微米的小山丘首次提供了清晰、详细的证据,证明在在太阳系外行星上发现了二氧化碳。 “数据一出现在我的屏幕上,巨大的二氧化碳特征就吸引了我,”约翰·霍普金斯大学研究生、JWST凌日系外行星社区早期发布科学团队团队的成员扎法尔·鲁斯塔姆库洛夫说,该团队进行了这项研究。“这是一个特殊的时刻,跨过了系外行星科学的一个重要门槛。” 以前,没有一个观测站在系外行星透射光谱的3到5.5微米范围内测量到如此多的单个颜色亮度的细微差异。获取光谱的这一部分对于测量水、甲烷和二氧化碳等气体的丰度至关重要,这些气体被认为存在于许多不同类型的系外行星中。 “在WASP-39 b上探测到如此清晰的二氧化碳信号,对于探测较小的类地行星上的大气层来说是个好兆头。”该团队的负责人、加州大学圣克鲁斯分校的纳塔莉·巴塔哈说。 了解行星大气层的组成很重要,因为它能告诉我们行星的起源和演化过程。“二氧化碳分子是行星形成过程中的敏感示踪剂。”该研究小组的另一名成员、亚利桑那州立大学的迈克·莱恩说。“通过测量这一二氧化碳特征,我们可以确定形成这颗气态巨行星使用了多少固态物质和多少气态物质。在未来十年,JWST将对各种行星进行这一测量,从而深入了解行星如何形成的细节,以及我们自己的太阳系的独特性。” 韦伯的近红外光谱仪(NIRSpec)于2022年7月10日捕获了热气体巨系外行星WASP-39b的透射光谱,揭示了太阳系外行星存在二氧化碳的第一个明确证据。这也是迄今为止捕获的第一个详细的系外行星透射光谱,覆盖波长在3到5.5微米之间。 影像来源:插图: NASA, ESA, CSA, and L. Hustak (STScI); 科学分析: The JWST Transiting Exoplanet Community Early Release Science Team 早期发布科学计划 对WASP-39b的NIRSpec棱镜观测只是一项更大调查的一部分,该调查包括使用多个韦伯仪器对该行星的观测,以及对其他两颗凌日行星的观测。这项调查是早期发布科学计划的一部分,旨在尽快为系外行星研究界提供强大的韦伯数据。 “我们的目标是快速分析早期发布的科学观测结果,并开发供科学界使用的开源工具。”牛津大学的联合研究员费雯·帕姆提尔解释说。“这使得来自世界各地的贡献成为可能,并确保未来几十年的观测将产生最好的科学成果。” 来自NASA艾姆斯研究中心的论文合著者娜塔莎·巴塔哈补充说,“NASA的开放科学指导原则以我们的早期发布科学工作为中心,支持包容、透明和协作的科学过程。” 詹姆斯·韦伯太空望远镜是世界上首屈一指的太空科学天文台。韦伯将解开我们太阳系中的谜团,展望其他恒星周围的遥远世界,探索我们宇宙的神秘结构和起源以及我们在其中的位置。韦伯是由NASA及其合作伙伴 ESA和CSA领导的一项国际计划。 参考来源: https://www.nasa.gov/feature/goddard/2022/nasa-s-webb-detects-carbon-dioxide-in-exoplanet-atmosphere

银河系的延时照片

银河系的延时照片

This time lapse of the Milky Way Galaxy taken from the International Space Station (ISS) also captured a lightning strike on Earth so bright that it lit up the space station’s solar panels. Astronaut Kjell Lindgren posted this on Twitter and Instagram on Sept. 2, 2015, saying, “Large lightning strike on Earth lights up or solar panels.” See more photos from the ISS. Image credit: NASA/Kjell Lindgren 这张从国际空间站(ISS)拍摄的银河系的延时照片也捕捉到了地球上的一次闪电,如此明亮,照亮了空间站的太阳能电池板。 宇航员谢尔·林德格伦于2015年9月2日在Twitter和Instagram上发布了这条消息,他说:“地球上的大闪电会照亮太阳能电池板。” 查看来自国际空间站的更多照片。 图片来源:NASA/Kjell Lindgren

哈勃望远镜看到红色超巨星参宿四在爆炸后缓慢恢复

哈勃望远镜看到红色超巨星参宿四在爆炸后缓慢恢复

通过分析来自NASA哈勃太空望远镜和其他几个天文台的数据,天文学家得出结论,明亮的红色超巨星参宿四在2019年发生爆炸,失去了大部分可见表面,并产生了巨大的表面物质抛射(SME)。这是在正常恒星的行为中从未见过的现象。 我们的太阳通常会抛射出其稀薄的外层大气日冕的一部分,这被称为日冕物质抛射(CME)。但是参宿四SME爆炸的质量是典型CME的4,000亿倍! 这颗巨型恒星仍在缓慢地从这场灾难性的剧变中恢复。“参宿四现在仍在做一些非常不寻常的事情;它的内部有点反弹。”马萨诸塞州剑桥哈佛和史密森天体物理中心的安德里亚·杜普利说。 这些新的观测结果提供了一些线索,让我们了解到红色恒星在其核聚变熔炉烧尽后,在爆炸成为超新星之前,是如何在生命后期失去质量。质量损失的数量显著影响它们的命运。然而,参宿四出人意料的暴躁行为并不是该恒星即将爆炸的证据。因此,质量损失事件不一定是即将发生爆炸的信号。 杜普瑞现在正在把这颗恒星在喷发前、喷发后和喷发期间的任性行为的所有谜团拼凑起来,形成一个连贯的故事,讲述一颗衰老恒星中前所未见的巨大变动。 这幅图描绘了红色超巨星参宿四在一大块可见表面发生巨大质量抛射后亮度的变化。从地球上看,抛射出来的物质冷却后形成一团尘埃,暂时使恒星看起来更暗。这场史无前例的恒星剧变破坏了这颗巨星长达400天的振荡周期,天文学家已经测量了200多年。现在,内部可能会像一盘明胶甜点一样摇晃。 影像来源:NASA, ESA, Elizabeth Wheatley (STScI) 这包括来自STELLA机器人天文台、弗雷德·劳伦斯·惠普尔天文台的蒂林赫斯特反射式阶梯摄谱仪(Tillinghast Reflector Echelle Spectrograph, TRES)、NASA的日地关系天文台(STEREO-A)、NASA的哈勃空间望远镜和美国变星观察员协会(AAVSO)的新光谱和成像数据。杜普利强调,哈勃的数据对解开谜团至关重要。 “我们以前从未见过恒星表面发生巨大的物质抛射。我们还没有完全理解正在发生的事情。这是一种全新的现象,我们可以用哈勃直接观察并解析表面细节。我们正在实时观察恒星的演化。” 2019年参宿四的巨大爆发可能是由一股直径超过100万英里的对流羽流引起的,它从恒星内部深处冒出来。它产生的冲击和脉动,将光球层的一部分炸开,使恒星在由光球层的冷却部分产生的尘埃云下有很大的冷却表面积。参宿四现在正努力从这一损伤中恢复。 这片破碎的光球碎片重量大约是月球的几倍,它迅速飞入太空,冷却后形成尘埃云,阻挡了地球观测者看到的恒星发出的光线。这种变暗现象始于2019年底,持续了几个月,即使是在后院观察恒星亮度变化的观察者也很容易注意到。参宿四是天空中最亮的恒星之一,很容易在猎户座的右肩找到。 更神奇的是,这颗超级巨星400天的脉动频率现在已经消失了,也许至少暂时消失了。近200年来,天文学家们一直在测量参宿四这个节奏明显的亮度变化和表面运动变化。它的破坏证明了喷发的凶猛。 杜普利认为,这颗恒星内部的对流室驱动有规律的脉动,可能像不平衡的洗衣机浴缸一样四处晃动。TRES和哈勃光谱暗示外层可能会恢复正常,但在光球层重建的过程中,表面仍然像一盘明胶甜点一样弹跳。 尽管我们的太阳有日冕物质抛射,会抛射外层大气的一小部分,但天文学家从未见过如此大量的恒星可见表面被喷射到太空中。因此,表面物质抛射和日冕物质抛射可能是不同的事件。 参宿四现在非常巨大,如果它取代了太阳系中心的太阳,它的外表面将延伸超过木星的轨道。1996年,杜普利利用哈勃望远镜分辨出恒星表面的热点。这是除太阳外的第一张恒星的直接图像。 NASA的韦伯太空望远镜可可能能够探测到不断远离恒星的红外光喷射物质。 哈勃太空望远镜是NASA和ESA(欧洲航天局)之间的国际合作项目。位于马里兰州绿带的美国宇航局戈达德航天飞行中心负责管理该望远镜。位于马里兰州巴尔的摩的空间望远镜科学研究所(STScI)负责哈勃的科学操作。STScI由位于华盛顿特区的天文学研究大学协会为NASA运营。 参考来源: https://www.nasa.gov/feature/goddard/2022/hubble-sees-red-supergiant-star-betelgeuse-slowly-recovering-after-blowing-its-top

哈勃望远镜俯瞰着太空的云景

哈勃望远镜俯瞰着太空的云景

This celestial cloudscape from the NASA/ESA Hubble Space Telescope captures the colorful region in the Orion Nebula surrounding the Herbig-Haro object HH 505. Herbig-Haro objects are luminous regions surrounding newborn stars that form when stellar winds or jets of gas spew from these infant stars creating shockwaves that collide with nearby gas and dust at high speeds. In the case of HH 505, these outflows originate from the star IX Ori, which lies on the outskirts of the Orion Nebula around 1,000 light-years from Earth. The outflows themselves are visible as gracefully curving structures at the top and bottom of this image. Their interaction with the large-scale flow of gas and dust from the core of the nebula distorts them into sinuous curves. Captured with…

费米证实恒星残骸是极端宇宙粒子的来源

费米证实恒星残骸是极端宇宙粒子的来源

天文学家长期以来一直在寻找银河系中能量最高的质子的发射地点。现在,一项研究使用了NASA费米伽玛射线太空望远镜12年的数据,证实了一个超新星遗迹就是这样的地方。 探索天文学家如何找到超新星遗迹,该遗迹发射的质子能量是地球上最强大的粒子加速器的10倍。 影像来源:NASA戈达德航天飞行中心 费米已经证明,爆炸恒星的冲击波将粒子提升到与光速相当的速度。这些粒子被称为宇宙射线,主要以质子的形式存在,但也可以包括原子核和电子。因为它们都带有电荷,所以当它们在我们银河系的磁场中快速移动时,它们的路径变得混乱。由于我们无法再分辨它们来自哪个方向,这就掩盖了它们的出生地。但当这些粒子与超新星残骸附近的星际气体碰撞时,它们会产生一种伽马射线——这是能量最高的光。 “理论家们认为银河系中能量最高的宇宙线质子能达到100亿电子伏,或者PeV能量。”麦迪逊威斯康星大学物理学助理教授方柯(Ke Fang)说。“它们的来源,也就是我们所说的拍电子伏特宇宙线加速器(PeVatrons),其确切性质一直难以确定。” 这些粒子被混沌磁场困住,反复穿越超新星的冲击波,每次穿越都会获得速度和能量。最终,超新星残骸再也抓不住它们,它们飞快地飞向星际空间。 PeV质子的能量大约是世界上最强大的粒子加速器——大型强子对撞机的10倍,即将完全逃离银河系。 天文学家已经确认了一些可疑的PeVatron,其中一个位于我们银河系的中心。自然地,超新星遗迹是候选名单中的首选。然而,在大约300个已知遗迹中,只有少数被发现会发射足够高能量的伽马射线。 一个特别的恒星残骸引起了伽马射线天文学家的极大关注。它被称为G106.3+2.7,是一个彗星状的云,位于约2,600光年之外的仙王座。一颗明亮的脉冲星覆盖在超新星遗迹的北端,天文学家认为这两个天体是在同一次爆炸中形成的。 费米的主要仪器——大面积望远镜,从残骸的延伸尾部内探测到了十亿电子伏(GeV)伽马射线。(相比之下,可见光的能量大约为2到3GeV之间。)亚利桑那州南部弗雷德·劳伦斯·惠普尔天文台的高能辐射成像望远镜阵列系统(VERITAS)记录了来自同一区域的更高能量伽马射线。墨西哥的高海拔水切伦科夫伽马射线天文台和中国的西藏AS-γ实验阵列都从费米和VERITAS探测的区域探测到了能量为100万亿电子伏(TeV)的光子。 该序列比较了三个能量范围内的费米结果。脉冲星J2229+6114是超新星遗迹G106.3+2.7(用绿色标出)北端顶部的明亮光源。在每个能量范围内,序列首先显示伽马射线的数量,然后与背景模型的预期值进行比较。较亮的颜色表示伽马射线数量较多或过量。在最高能量下,当超新星冲击波加速的质子撞击附近的气体云时,产生了一种新的伽马射线源。 影像来源:NASA/Fermi/Fang et al. 2022 “这个物体已经引起了人们相当大的兴趣一段时间了,但要把它冠以PeVatron的称号,我们必须证明它在加速质子。”华盛顿美国天主教大学和马里兰州格林贝尔特NASA戈达德航天飞行中心的合著者亨利克·弗莱施哈克解释道。“问题在于,加速到几百电子伏的电子可以产生相同的辐射。现在,借助费米12年的数据,我们认为我们已经证明G106.3+2.7确实是一个PeVatron。” 方柯领导的一篇论文详细阐述了这一发现,发表在8月10日的《物理评论快报》上。 脉冲星J2229+6114在自转时会在灯塔状的信标中发出自己的伽马射线,而这种辉光以几GeV的能量在该区域占据主导地位,这种辐射大部分发生在脉冲星自转的前半段。该团队通过只分析来自周期后期的伽马射线,有效地屏蔽了来自脉冲星的辐射。低于10GeV时,残余物尾部没有明显的辐射。 在这个能量之上,脉冲星的干扰可以忽略不计,额外的来源变得很明显。该团队的详细分析压倒性地支持PeV质子是驱动伽马射线发射的粒子。 “到目前为止,G106.3+2.7是独一无二的,但它可能是新的超新星遗迹群中最亮的一员,这些超新星遗迹发射的伽马射线达到了TeV能量。”方指出。“费米天文台和超高能伽马射线天文台未来的观测可能会揭示更多的信息。” NASA探索宇宙奥秘——这个特殊的谜题需要十多年的前沿观测才能解决。 费米伽马射线太空望远镜是由戈达德管理的天体物理学和粒子物理学合作项目。费米是与美国能源部合作开发,法国、德国、意大利、日本、瑞典和美国的学术机构和合作伙伴做出了重要贡献。 参考来源: https://www.nasa.gov/feature/goddard/2022/nasa-s-fermi-confirms-star-wreck-as-source-of-extreme-cosmic-particles