韦伯空间望远镜全尺寸模型,2010年5月30日拍摄于纽约炮台公园。
CREDIT: NASA and STScI
如果地球是一颗围绕行遥远恒星的系外行星,那么我们该如何了解其大气成分?
詹姆斯韦伯空间望远镜拥有测量数千种微弱红光到红外光(0.6到28.3微米;1微米=1m的一百万分之一)的能力,能够检测到水蒸气、二氧化碳、氧气、甲烷、以及地球大气层中其他分子的特征。
免责声明
首先,让我们明确一点:韦伯并不会观测地球。地球非常温暖,因此它会发出大量红外线,正是韦伯探测的波段。从160万公里外观测,地球的红外能量太高,会烧毁韦伯的探测器。更糟糕的是,由于韦伯绕轨道运行的方式,如果它要观测地球,它也必须直视太阳,这也会直接摧毁韦伯。
韦伯将观测到太阳系中更遥远的行星以及系外行星。其中一些系外行星可能与地球非常相似。
韦伯将一直背靠太阳和地球,看向远方。
CREDIT: NASA and STScI
我们为什么在意韦伯眼中的地球?
尽管韦伯不会研究地球,但这样的设想很有意义。因为地球是我们进行比较的标准:我们对其他行星的了解要基于我们近距离对地球的研究。
我们知道火星上流淌的河流,因为火星上有山谷看起来跟地球上的一样。我们知道月球被岩石撞击,因为月球表面的坑看上去像撞击地球的陨石坑。我们发现金星的大气层主要有二氧化碳,这是根据对地球大气的观测和实验,通过实验我们了解了含有二氧化碳的大气“看起来”是什么样。当韦伯观测到可能具有类似地球大气的系外行星时,我们可以利用关于地球和其他行星大气的知识来解释这些观测结果。
地球的合成图像,来源于Suomi NPP卫星2012年1月的观测。
CREDIT: NASA/NOAA/GSFC/Suomi NPP/VIIRS/Norman Kuring
当我们问地球大气“看起来”什么样,是什么意思?
实际上这是在讨论地球的透射光谱。从卫星上看地球,我们很容易就能看到云、尘埃、烟雾等等,它们是由反射太阳光的小颗粒组成的。大气中的气体基本上是人眼看不见的,但是因为对阳光的散射,如果我们观测地球地面与太空边界的可见光波段,就能辨认出一层薄薄的蓝色。
国际空间站2019年5月在太平洋上空黎明时看到的地球边缘。我们能看见这层光是因为气体分子会散射、吸收、折射阳光。
CREDIT: ISS Expedition 59 Crew, NASA
对于系外行星来说,它们太小太远,就算韦伯功能强大,它也无法获得如此详细的图像。而且韦伯的观测范围是红光到红外光,并非可见光。即使它近距离观测地球,看到的也是地球在这些波段下的样子。
不过,当地球凌日时,韦伯能够探测到穿过地球大气层的阳光并精确地测出每个波长的强度。这些数据可以绘制成地球的透射光谱。
当行星经过恒星前方,望远镜会收集穿过行星大气层的星光。韦伯将测量光谱中每个波长的强度。
CREDIT: STScI
韦伯眼里的地球透射光谱是什么样?
下图代表了经过地球大气层过滤的太阳光光谱的样子。横轴是波长,对应光的颜色,纵轴是光的强度。值得注意的是,强度从上到下增加,即波峰代表强度弱。
类地系外行星的红色至中红外(0.6-28微米)的透射光谱。
CREDIT: Model data from T. Robinson, NAU
透射光谱可以帮助我们了解行星大气层的组成。
尽管人眼看不见构成地球大气层的气体,但大气层并不是完全透明的。在微观尺度上,许多波长的光都被大大小小的尘埃颗粒或原子分子阻挡。透射光谱显示了每个波长的光具体被阻挡了多少。
更重要的是,通过透射光谱我们可以确定哪些气体阻挡了光,从而确定大气的构成。从实验中,我们知道不同类型的原子和分子吸收某些特定波长的光。每种气体对应着独特的吸收光谱,可以作为识别它的“特征”或“指纹”。而大气的透射光谱基本上是各种吸收光谱的叠加。通过识别分析这些特征,便可以推断出构成大气的气体以及其相对丰度。
峰值展示了被吸收的波段,对应着大气中各种气体的证据。
CREDIT:Model data from T. Robinson, NAU
透射光谱揭示了地球大气中存在水蒸气、二氧化碳、氧气、臭氧、甲烷、还有许多其他分子。虽然韦伯无法直接探测到地球上的生命,但它表明地球大气中含有水、二氧化碳、氧气、臭氧等这些能使我们所认知的生命存在的基本成分。
当然,我们对地球大气已经非常了解了,用不着用太空望远镜的透射光谱来分析。但是如果研究遥远的系外行星,透射光谱将是我们分析行星大气的主要方法,这也是我们确定系外行星大气是否可能有利于生命的主要方法。
如果我们通过模型了解韦伯眼里的地球透射光谱是什么样,这将有利于以后的比较。我们对大气层与地球相似的行星特别感兴趣,这些类地行星可能是可居住甚至有“人”居住的。韦伯以及未来的太空望远镜会找到更多监拥有与地球相似的大气层的行星。我们是孤独存在的么?也许将来,这个问题会有答案。